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Abstract

A nontraditional numerical method for solving

conservation laws is being developed. The new method

is designed from a physicist's perspective, i.e., its de-

velopment is based more on physics than numerics.

Even though it uses only the simplest approximation

techniques, a 2D time-marching Euler solver developed

recently using the new method is capable of generating

nearly perfect solutions for a 2D shock reflection prob-

lem used by Helen Yee and others. Moreover, a recent

application of this solver to computational aeroacous-

tics (CAA) problems reveals that: (i) accuracy of its
results is comparable to that of a 6th order compact

difference scheme even though nominally the current

solver is only of 2nd-order accuracy; (ii) generally, the

non-reflecting boundary condition can be implemented

in a simple way without involving characteristic vari-

ables; and (iii) most importantly, the current solver is

capable ofhandling both continuous and discontinuous

flows very well and thus provides a unique numerical

tool for solving those flow problems where the interac-

tions between sound waves and shocks are important,

such as the noise field around a supersonic over- or

under-expansion jet.
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Figure 1.--Pressure distribution for a shock reflection
problem (a flow of Mach number 2.9 enters from the left;
the shock is reflected by a wall on the back).

1. Introduction

The method of space-time conservation element
and solution element is a new numerical discretiza-

tion method for solving conservation laws [1-13]. The
new method differs substantially in both concept and

methodology from the well-established methods-i.e.,

finite difference, finite volume, finite element, and

spectral methods. It is designed to overcome sev-

eral key limitations of the above traditional methods.

In addition, its development is driven by an empha-

sis on simplicity, generality, and accuracy. In this

paper, we shall describe a 2D time-marching Euler
solver developed recently using the new method [2].

Even though it does not use (i) any approximation



techniquesmorecomplicatedthanTaylor'sexpansion
orweightedaveraging,(ii) anymesh-refinement tech-

niques, (iii) any monotonicity constraints, (iv) any
characteristics-based techniques, or (v) any ad hoc

techniques that are used only in the neighborhood

of a discontinuity, this solver is capable of generat-

ing highly accurate solutions for a 2D shock reflection

problem used by Helen Yee and others [14]. As shown

in Fig. 1, both the incident and the reflected shocks can

be resolved by a single data point without the presence

of numerical oscillations near the discontinuity.

Recently, Lob and others [13] have successfully

simulated some benchmark aeroaconsties problems us-

ing the new Euler solver. The non-reflecting boundary

condition is nearly perfect with almost no modification

of the original code. In several free shear layer calcu-

lations, the smallest eddies are consistently resolved

in 3-4 grid cells. Some interesting vortex/shock (or

Mach waves) interactions, which have never been re-

ported before, were also observed. A further discussion

of these results is given near the end of Sec. 5.

The Introduction section of [1] begins with a

lengthy discussion that includes (i) an examination of
the traditional methods and their limitations, and (ii)

a study of the general requirements for an accurate
solver of conservation laws. The current method is

built on a set of design principles that emerge from
the above discussion. In this section, an overall view

of the current method will be given from a historical

perspective. Particularily, it will be explained how the
current method was shaped by fundamental physics
considerations.

The first physical problem considered in the cur-

rent development is an initial-value problem involving
the PDE

au 0u
+ a_ ----O (1.1)

where the convection speed a is a constant. The exact

solution to any such problem has three fundamental

properties: (i) it does not dissipate with time, (ii) its

value at a spatial point at a later time has a finite do-

main of dependence (a point) at an earlier time, and

(iii) it is completely determined by the initial data at a
given time. Ideally, a numerical solution for Eq. (1.1)

should also possess the same three properties. Because

(i) a solution of a dissipative numerical scheme will

dissipate with time; (ii) the value of a solution of an

implicit scheme at any point (z,t) is dependent on all
initial data, and all the boundary data up to the time

t; and (iii) the unique determination of a solution of
a mu/ti-level scheme requires the specification of the

initial data at two or more time levels, an ideal solver

must be a two-/eve/, explicit, and neutrally stable (i.e.,

non-dissipative) scheme. In 1991, such a solver was re-
ported in [5]. Because this new solver models Eq. (1.1)

which is characterized by the parameter a, hereafter it
will be referred to as the a scheme. The a scheme is

neutrally stable if the Courant number < 1. It is the

only two-level explicit solver of Eq. (1.1) known to the

authors to be neutrally stable.

Development of the a scheme is aided by recasting

Eq. (1.1) into an integral form that represents a law of
flux conservation [1,5,9]. The a scheme is derived by

using both Eq. (1.1) and its integral form. Note that

the conservation law appears in a form in which space
and time are unified and treated on the the same foot-

ing. This unity of space and time, and the requirement
that flux-conservation be emeoreed/ocally (i.e., down to

a computational ce//) and globally (i.e., over the entire

computational domain) are two tenets of the current
numerical method. They are also the key characteris-

tics that distinguish the current method grom most of
the trad/tional methods.

Note that the enforcement of both local and

global flux conservation may also prevent incons/s-

tency among initial/boundary conditions.

The a scheme has many nontraditional features.

At each mesh point (j,n), it has two independent

marching variables u"- and (u_)_ with the latter be-
ing the analogue of _u/az at the mesh point. It also
has the simplest stencil, i.e., a triangle with one ver-

tex at the given time level and the other two vertices

at the previous time level. In contrast to a typical

finite-volume scheme, extrapolation and interpolation
are not used in the a scheme for the evaluation of the

flux at an interface separating two neighboring conser-

vation elements. Moreover, the a scheme is a two-way

marching scheme, i.e., the forward marching scheme
can be inverted to become the backward marching

scheme. /n other words, the marching variables at

the (n- 1)th t/me level can be determined in terms
of those at the nth time level. These and other non-
traditional features of the a scheme are discussed in

depth in [1,9].

Because there are two independent marching vari-

ables at each mesh point (j, n), two amplification fac-

tors appear in the yon Neumann stability analysis of

the a scheme [1,5,9]. It happens that these two factors
are identical to those of the Leapfrog scheme [15] if the

latter factors arise from a "proper" yon Neumann anal-

ysis. Note that a solution to the main Leapfrog scheme

(excluding the starting scheme which relates the mesh
variables at the first two time levels) is formed by two

decoupled solutions. Traditionally the von Neumann

analysis for the Leapfrog scheme is performed without

2



taking into account this decoupled nature. In [1,9],
it is performed separately for each decoupled solution.
The amplification factors thus obtained are identical
to those of the a scheme. This coincidence was un-

expected because the Leapfrog and the a schemes are
structually different.

The fact that the amplification factors of the
a scheme are related to those of a celebrated clas-

sical scheme is on/y one among a str/ng of similar
unexpected coincidences encountered during the de-
velopment of the current method. As will be ex-

plained in this paper, the amplification factors of the
Lax-Wen&off, the Lax, the Crank-N/co/son, and the

DuFort-_rankel schemes [75] also are identical to those
of some of the extensions of the a scheme.

Because the solutions of the a scheme were re-

quired to share with those of Eq. (1.1) the same funda-
mental properties referred to earlier, during the early
day of its development Chang realised that such a
scheme must share with Eq. (1.1) certain basic in-
variant properties in space-time. He studied the in-
variant properties of Eq. (1.1) with respect to spa-
tial reflection, time reversal, and space-time inversion.
He then defined rigorously what it means for a tWD-
level constant-coefficient tinite-difference analogue of

Eq. (1.1) to have similar invariant properties. In this
study, it is assumed that there is only one marching

variable u_ at a mesh point for a fin/re-difference ana-
logue of Eq. (1.1). With the above assumptions, it
was shown that the yon Neumann amplification factor

of a numerical analogue satisfies a special relation for
each invariant property that this analogue possesses.
Particularly, an analogue is unconditionally neutrally
stable ff it is invariant under space-time inversion. As
an example, the implicit Wendroff scheme [16] is in-
variant under space-time inversion. Its amplification
factor is

cos(o/2)- i sin(o/2) (i =  cf) (1.2)
G = cos(o/2)+  vsin(o/2)

Here 0 is the phase angle variation per mesh interval
and v is the Courant number. Note that ]G[ = 1 for

any v.
The results of the above study were presented in

a conference that took place in 1992 [6]. Because a
two-level explicit fiuite-dL_erence scheme is not invari-
ant under space-time inversion, one can infer from the
arguments made in [6] that such a scheme cannot be
an ideal scheme, i.e., neutrally stable.

The two-level finite-difference scheme has only

one amplification factor. For a numerical analogue of

Eq. (1.1) with two amplification factors G+ and G-,

generally one cannot conclude that the scheme is un-
conditionally neutrally stable if it is invariant under
space-time inversion. For the Leapfrog scheme or the
a scheme, we have G+G- -- -1. In general it does not
imply neutral stability, i.e., ]G+I - [G_[ = 1. How-
ever, it does imply that such a scheme must be neu-
tral/y stable if it is stab/e, i.e., if [G+[ _<I and IG- [ _<
1. For both the a and the Leapfrog schemes, this im-

plies that they are neutrally stable if the Courant num-
ber < 1.

In the 11th AIAA CFD conference (July, 1993),
Thomas and Roe* presented a paper [17] in which
the concept of the invariance under space-time inver-
sion is also used to construct non-dissipative numerical
schemes. Note that the concept of "rotational sym-
metrf' in space-time (i.e., "invariance under space-
time inversion") was discussed briefly in [17]. Unfor-
tunately, this discussion is faulty in two aspects. It
considers only one amplification factor G in spite of the
fact that the scheme under consideration, i.e., the "Up-

wind Leapfrog scheme" has two amplification factors.
Furthermore, it leads to the conclusion that G = I for
a scheme that is invariant under space-time inversion.
Even for a scheme that has only one amplification fac-

tor, this conclusion is obviously false. As an example,
consider the Wendroff scheme. It is invariant under

space-time inversion and yet G _ 1, except for the
case usin(0/2) = 0 (see Eq. (1.2)).

In a 1994 ICASE report [18], the concept of in-
variance under space-time inversion is again used by
Roe to construct non-dissipative linear Bicharacteris-
tic schemes.

The a scheme is only a special case of a more

general two-level explicit scheme described in [5]. It is
a solver for

Ou Ou O=u
_- -t-a_x - P_z 2 = 0 (1.3)

where the viscosity coefficient p()_ 0) is a constant.
Because this solver models Eq. (1.3) which is charac-
terized by the parameters a and p, hereafter it is re-
ferred to as the a-p scheme. The a-p scheme reduces
to the a scheme if p = 0. Because the a scheme is neu-
trally stable, the a-p scheme has the property that the
numerical dissipation of its solution approaches zero

as the physical dissipation approaches zero.

*A participant of the 23rd Conference on Modeling
and Simulation, April 30-May 1, 1992, Pittsburgh, PA.
He was in the audience when the paper [6] was pre-

sented by Chang, and participated in the discussion
afterward.
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Theabovepropertyis importantbemuseof the
followingobservation:With afewexceptions,numer-
ical dissipationgenerallyappearsin a numericalso-
lutionof a time-marchingproblem.In otherwords,
thenumericalsolutiondissipatesfasterthanthecorre-
spondingphysicalsolution. For a nearly inviscid prob-
lem, e.g., flow at a large Reynolds number, this could
be a serious difficulty because numerical dissipation

may overwhelm physical dissipation and cause a com-
plete distortion of solutions. To avoid such a difficulty,
at the minimum, a model solver for Eq. (1.3) should be
required to have the special property mentioned above.

In [5], it is shown that the a-p scheme, which is
explicit, has the unusual property that its stability is
limited only by the CFL condition, i.e., it is indepen-
dent of p. Furthermore, the. ampli_catiou factors of
the a-p scheme reduce to those of the DuFort-Frankel
scheme ira - 0 [1,9]. Note that a solution of the latter
scheme is also formed by two decoupled solutions. As a
result, the yon Neumann analysis should be performed

separately for each decoupled solution.
In order to "explore the concept of a dynamic

space-time mesh and the need for a unified treatment
of physical variables and mesh parameters" [5, p.24],

a moving mesh with a uniform speed b was introduced
in [5] (see Fig. 2(a)). With the aid of a Galilean trans-
formation, it is shown that the a-p scheme or a typi-
cal finite-difference solver of Eq. (1.1) or (1.3) can be
converted to its moving-mesh form by simply replac-

ing the parameter a with a - b. As an example, the
moving-mesh form of the Leapfrog scheme is

n

_ b) UJ+2_;'_ 1 -0 (1.4)1- u;-" + (a " - "-
2At

Note that: (i) Eq. (1.4) reduces to the regular form
of the Leapfrog mesh if b - 0, i.e., if the mesh be-
comes stationary, and (ii) a moving-mesh form and
its stationary-mesh counterpart actually represent two
different schemes (read Sec. 3, "The Dynamic Space-
Time Mesh" in [5]).

Let b -- a. Then (i) a mesh line with j being a
constant along this line points in the characteristic di-

rection of Eq. (1.1), and (ii) Eq. (1.4) is reduced to

_+1 _ u_-l, i.e., the numerical value of u is con-
stant along such a mesh line. Because u is constant
along a characteristic line if it is an exact solution of

Eq. (1.1), aside from round-off errors, a numerical solu-
tion matches perfectly with its analytical counterpart.

As a result of the above observation, and other

considerations given in [5], one arrives at the impor-
tant conclusion [5, p.3]: "--. (i) stab//ity and accuracy
can be improved, and (ii) dissipation and dispersion

can be reduced, if the space-time mesh is allowed to
evolve with the physical variables such that the local
convective motion of physical variables relative to the

moving mesh is kept to a minimurrL"
Because of the complexity involved, the dynamic

space-time mesh has not yet been used in the current
development beyond the applications reported in [5].

Note that the "Upwind Leapfrog scheme" referred

to in [17,18] can be considered as a special case of
Eq. (1.4). Let b = Az/At. Then, as depicted in
Figs. 2(a) and 2(b), the mesh points (j, n + 1) and

(j + 1,n) line up at one spatial location, while the
mesh points (j - 1, n) and (j, n - 1) line up at another
spatial position. Also Eq. (1.4) becomes

n tin n-1 n n- - ) aU. +l- u _l+ ( + = 0
2At 2Az

(1.5)

The stencil of Eq. (1.5) is shown in Fig. 2(b). The
stencil of the "Upwind Leapfrog scheme" is depicted
in Fig. 4 in [17] and reproduced in Fig. 2(c) here.

A comparison between Figs. 2(b) and 2(c) reveals

that (i) the mesh points (j, n-I- 1), (j-l- 1, n), (j - 1, n),
and (j,n- 1) in Fig. 2(b) correspond, respectively,
to the mesh points (j, n + 1), (j, n), (j - 1, n), and
(j- 1, n - 1) in Fig. 2(c); (ii) the mesh interval 2Az
in Fig. 2(b) corresponds to the mesh interval Az in
Fig. 2(c); and (iii) the time-step size At in Fig. 2(b)
corresponds to the time-step size At in Fig. 2(@ Note
that the moving-mesh indices are used here, while the
stationary-mesh indices are used in [17]. By replac-
ing (i) the moving-mesh indices with the correspond-
ing stationary-mesh indices, and (ii) 2Az with Az,
Eq. (1.5) becomes

n

_ Un-l_ _ -- Uj_ 1(u +l - + J + a = 0
2At Az

(1.0)

i.e., the defining equation for the "Upwind Leapfrog

scheme" (see Eq. (4) in [17]).
The a scheme is neutrally stable and reversible

in time [1,5,9]. It is well known that a neutrally sta-
ble numerical analogue of Eq. (1.1) generally becomes
unstable or highly dispersive when it is extended to
model the Euler equations. It is also obvious that a
scheme that is reversible in time cannot model a physi-

cal problem that is irreversible in time, e.g., an inviscid
flow problem involving shocks. Hence, the a scheme
is extended to become the a-e scheme [1,9]. Stability
of this scheme is limited by the CFL condition and
0 __ e _ 1 where e is a special parameter that con-
trois numerical dissipation. Moreover, if e - 0, the
a-e scheme reduces to the a scheme which has no nu-

merical dissipation. On the other hand, if e - 1, the



two amplification factors of the a-e scheme become the
same function of the Courant number and the phase

angle. Unexpectedly, this function also is the amplifi-

cation factor of the highly diffusive Lax scheme.

The a-e scheme was extended [1,9] to solve the

1D time-dependent Euler equations of a perfect gas.

The Enler extension has stability conditions similar to

those of the a-_ scheme itself. It has the unusual prop-

erty that numerical dissipation at all mesh points can

be controlled by a set of local parameters. Moreover, it

is capable of generating accurate shock tube solutions
with the CFL number ranging from 1.0, to 0.022.

The a-p scheme was also extended [1,9] to solve

the 1D time-dependent Navier-Stokes equations of a

perfect gas. Stability of this explicit solver also is lim-

ited only by the CFL condition. In spite of the fact

that it does not use (i) any techniques related to the

high-resolution upwind methods, and (ii) any ad hoc

parameter, the Navier-Stokes extension is capable of

generating highly accurate shock tube solutions. Par-

ticnlarly, for high-Reynolds-number flows, shock dis-
continuities can be resolved within one mesh interval.

This concludes the review of the development of

the current method up to 1993. In the rest of this

paper, we shall describe several 2D extensions of the
1D schemes discussed earlier. The first scheme to be

discussed is the 2D version of the a scheme. Again, it

is a two-level, explicit, and neutrally stable scheme.

2. The 2D a Scheme

In this section, we consider a dimensionless form

of the 2D convection equation, i.e.,

_)u Ou 0u
(2.1)

where aft, and ay are constants. Let =1 -- z, z2 -- y,
and zs - t be the coordinates of a three-dimensional

Euclidean space Ea. By using Gauss' divergence the-

orem in the space-time Es, it can be shown that

Eq. (2.1) is the differential form of the integral con-
servation law

s(v) _" dg= O (2.2)

Here (i) S(V) is the boundary of an arbitrary space-

time region V in Ea, (ii)

(a=u,a u,u) (2.3)

is a current density vector in E3, and (iii) d_"- d_

with de and 5, respectively, being the area and the

outward unit normal of a surface element on S(V).

Note that (i) h. dg is the space-t/me flux of _ leav-

ing the region V through the surface element dg, and

(ii) all mathematical operations can be carried out

as though E3 were an ordinary three-dimensional Eu-

clidean space. As will be shown shortly, Ea will be di-

vided into nonoverlapping space-time regions referred

to as conservation elements (CEs).

In the following, we shall introduce a nontradi-

tional space-time mesh. Its use will result in the sim-

plest stencil possible for the current scheme, i.e., a

tetrahedron in 3D space-time with one vertex at the

upper time level and other three at the lower time

level. Also this mesh is compatible with the require-
ment that the 2D a scheme be invariant under space-

time inversion. Most importantly, three conservation

elements per mesh point are embedded in this mesh
such that each mesh point is associated with three flux-
conservation conditions. This mesh structure matches

perfectly with the fact that there are three unknowns

(the numerical analogues of u, Ou/(?z and Ou/Oy) at

each mesh point.
Let n denote the time level and

t" _ nz_t, n -- 0, _1/2, :!:1, -'-3/2,... (2.4)

Let j and h be spatial mesh indices with j,k =

0, _-1/3, 4-2/3, :!:1,... (see Figs. 3-6). Let f_l de-

note the set of mesh points (j,/c,n) with j,/_ --

0,-I-1,-I-2,..., and n = -I-1/2, :1:3/2, 4-5/2, .... These

mesh points are marked by solid circles. Let f_2
denote the set of mesh points (j,/¢, n) with j,/: -

1/3, 1/3-1-1, 1/3-I-2,..., and n - 0,4-1,-!-2, .... These

mesh points are marked by open circles. The union of
_1 and _2 will be denoted by fL

Each mesh point (j, k, n + 1/2) in f_l (by deft-

nition, this implies that n = 0,-I-1,-I-2,...) is associ-

ated with three CEs, denoted by CE_I)(j, k,n + 1/21,

l -- 1,2,3 (see Fig. 7(a)). It is also associated with a

solution dement (SE), denoted by SE(1)(j, k, n + 1/2)

(see Fig. 7(!))1. Similarly, each mesh point (j, k, n + 1)
in f_2 is associated with three conservation elements

CE_)(j,/:, n -!- 1), t = 1,2,3 (see Fig. 8(a)), and a so-
lution element SE(2)(j, k, n + 11 (see Fig. 8(b)). Each

CE is a quadrilateral cylinder in space-time while each
SE is the union of three vertical planes, a horizontal

plane, and their immediate neighborhood. The ge-

ometry of the hexagon ABCDEF, which appears in

both Figs. 7(a) and 8(a), is determined by three pos-

itive parameters w, b and h (see Fig. 9(a11. Without

any loss of generality, we assume that the line segment

joining points D and A in Fig. 9(a) is parallel to the

z-axis. Note that the form of Eq. (2.1) will not change

under an orthogonal transformation on the z-p plane.



Thus one always can introduce a set of Cartesian co-
ordinates (z,y) such that the above line segment is
parallel to the z-axis. However, the values of a= and

aU may change as a result of such a transformation.
According to Fig. 3, Es can be filled with the CEs

defined above. Moreover, it is seen from Figs. 7(ai,

7(b), 8(a), and 8(b) that the boundary of a CE is
formed by the subsets of two neighboring SEs.

Let the space-time mesh be uniform, i.e., the pa-

rameters At, w, b, and h are constants. Let zj,k and
yj,t be the z- and p- coordinates of any mesh points
(j, k, ,) E ft. Let zo,0 = 0 and Yo,o = 0. Then infor-
mation provided by Figs. 9(a) and 9(b) implies that

xi,k= (j + k)_ + (t - j)b, _j,k= (t-- j)h (2.5)

Let fix, _2, _3, _4, _s, and _o be the vectors depicted

in Fig. 9(a). They lie on t__hez-___ypl..___e and are the
outward unit normals to AB, BC, CD, DE, EF, and
FA, respectively. It can be shown that

and

_, = (h,-b + _/3,0) _ = -_, (2.0.)
_/h2+ (b- _/3)2'

_2= (0,1,0), _5= -_2 (2.0b)

_3 = (-h,_ + w/3,0) _e = -_s (2.6c)
x/h2+ (b+ _/3)2'

For any (j, k,, I E _, let

SE(/, k, n) ,.et /

SE(1)(], k, 711,

[SECt)O,k,.),

For any (z,y,t) E SE(j,k,,), u(z,y,t) and h(z,y,t),
respectively, are approximated by

if (j, k, n) e n,

if (j, k, nl e n2.
(2.7)

."(_,y,_;j,k,.)d=.,.y,_+ ("-)}',k("--"i,k)

+ (u.);",_(y--Yi,_)+ (u,)y,k(t--e)

and

(2.8)

T_'(z,y,t;£k,n) d_= [...'(_,y,t;/,k,.),
auu'(=,_,t;j,_,.), u'(=,y,t;j,k,.)]

(2.9)

ft 11 N nwhere u_/_, (uz)//_, (uy)/,_, and (ut)j,_ are constants
within SE(j, k,.-_. The last four coefficients, respec-
tively, can be considered as the numerical anal_mes
of the values of u, Ou/Oz, Ou/Oy, and 0u/Or at

(zi, yt, t"). As a result, the expression on the right side
of Eq. (2.8) can be considered as the first-order Tay-
lot's expansion of u(z,y,t I at (zi,yl:,t"). Also note
that Eq. (2.9) is the numerical analogue of Eq. (2.3).

We shall require that u = u*(z,y,t;j,l_,, I saris-
ties Eq. (2.11 within SE(j, k, nI. As a result,

N n

(ut1_",_= - [a.(u.);,t_ + a,(u,1;,_] (2.10)

Substituting Eq. (2.10) into Eq. (2.8), one has

u'(_,_,,;_,_,,) = uy,_
+ (u=1_,_ [(z--z$,_) - .z(_-- t")] (2.111

+ (%)Y.k[(_-- _,_) - ,,(t --e)]

Thus there are three independent marching variables,

i.e., u_, (u=)jn_, and (u_)_, _ associated with a mesh
point (j,k,n) _. t_. For any (j,k,n + 1/2) _ _x,
these variables will be determined in terms of those

associated with the mesh points (j + 1/3, k + 1/3, n),
(j - 2/3, k + 1/3, n), and (j + 1/3, k - 2/3, n) (see
Fig. 10(a)) by using the flux conservation relations:

/S(CE(,)(j.k,,+ll2)) h" . dF= 0,
t = 1,2,3 (2.12)

Similarly, the marching variables at any (j,k,n +

1) E t_2 are determined in terms of those associ-
ated with the mesh points (j- 1/3,k - 1/3,, + 1/2),
(j + 2/3,/_- 1/3,, + 1/2), and (j- 1/3, k + 2/3, n+ 1/2)
(see Fig. 10(b)) by using the flux conservation rela-
tions:

_" -ds'= 0, t = 1,2,3 (2.13)
(c_=_O,_,.+,))

Obviously, Eqs. (2.12) and (2.13) are the numerical
analogues of Eq. (2.2).

As a result of Eqs. (2.12) and (2.13), the total
flux leaving the boundary of any CE is zero. Because
the flux at any interface separating two neighboring
CEs is calculated using the information from a single
SE, the flux entering one of these CEs is equal to that
leaving another. It follows that the local conservation
conditions Eqs. (2.12) and (2.13) will lead to a global
conservation condition, i.e., the total tiux leaving the
boundary of any space-time region that/s the union of
any combination of CF_ will also vanish.

In the following, several preliminaries will be given
prior to the evaluation of Eqs. (2.121 and (2.13). To

proceed, note that a mesh line with j and n being con-
stant or a mesh line with k and n being constant is not



aligned with the z-axis or the y-axis. We shall intro-

duce a new spatial coordinate system ((, 7) with its

axes aligned with the above mesh lines (see Fig. 9(c I).

Let _'= and _'y be the unit vectors in the z- and the

y- directions, respectively. Let _'_ and _'_ be the unit

vectors in the directions of _ and _ (i.e., the f

and the/c- directions-see Figs. 9(a)-(c)) , respectively.
It can be shown that

_'¢ = [(w - b)_'x - h_'u]/4( (2.14)

and

_ = [(w+ b)_=+ h_y]/47 (2.15)
where

With the aid of Eqs. (2.51, (2.201, and (2.22/, it

can be shown that the coordinates ((, _/) of any mesh

point (j, k, n I E t_ are given by

( - j 4(, and r] - k A 7 (2.231

i.e., 4( and 47 are the mesh intervals in the (- and

the _ directions, respectively.
Next we shall introduce several coefficients that

are tied to the coordinate system ((,U). Let

(2.24)

Also, for any (j, k,n) E fZ, let

4( dej ID---,'_I= _(w -- b) 2 -I- h2 (2.161

and

4_ = = _(w + b) 2 + h _ (2.17)

Let the origin of (z, y) also be that of ((, 7). Then the

spatial coordinates (z, Yl and ((, 7) of any point in Ea
are related by the condition

¢_¢+7_. = -_.+y_y (2.18)

Substituting Eqs. (2.14) and (2.15) into Eq. (2.18), one
has

(y)--T(_) (2.19)

and

Here

and

(2.21)

_±
4( 47 z

4( (w+ b)4¢)

2wh

T_I dej (2.221

47 (w- b)4_
2wh

Note that the existence of T -1, the inverse of T, is

assured if wh _ O.

I(Ig¢)J_kl defT_ I(_l_)J_/l:l= (2.25)

_,(_)j',k/ \ ("y)i,k/

where _ is the transpose of T. For those who are

familiar with tensor analysis, the following comments

will clarify the meaning of the above definitions:

(a) (a¢, %) are the contravariant components with re-

spect to the coordinates ((, 7) for the spatial vec-

tor whose z- and y- components are az and ay,

respectively.

(b) ((u¢l_,_,(u_l_,k) are the covariant components
with respect to the coordinates ((, _/I for the spa-

tial vector whose z- and y- components are (u=)_,t

and (uyl_,k , respectively.
(c I Because the contraction of the eontravariant com-

ponents of a vector and the covariant components

of another is a scalar, Eq. (2.101 can be rewritten

as

(uz)_n,zt."" - [a¢(u¢)_,/_ -I- art('%)_,je] (2.26)

(d) Under the //near coordinate transformation de-

fined by Eqs. (2.19) and (2.20), ((-j4(, _/-/_4r_)
are the contravariant components with respect to

the coordinates ((, 7) for the spatial vector whose

z- and y- components are z - z_,_ and y - yj,_,

respectively. Using the same reason given in (cl,

Eq. (2.111 implies that

u*(z,y,t;j,/_,n) = -*((,7,t;j,/_,-) (2.27)

where

.*(¢,,_,t;j, _,.) +._'+

+ (.+)+",+[(¢- j40 - .¢(+- +")]
+ (-_)_",_[(7- _47)- %(_- e)]

(2.281
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Note that Eqs. (2.26) and (2.27) can also be ver-
ified directly using Eqs. (2.20), (2.22), (2.24), and

(2.25).
Next, let (i)

a_ def 6 d_ 6= _-_a¢, a+_ -- --avA_ (2.29)

(a)

-- T (u")J'k(2.30)

and (iii)

def 4 def z_t + (2.31)

The coefficients defined in Eqs. (2.29) and (2.30) can
be considered as the normalized counterparts of those
defined in Eqs. (2.24) and (2.25). Also note 'that 4_,

and Ar/___urespectively,are the lengths of the sides DF,
and BD of ABDF depicted in Figs. 9(a)-(c). More-
over, by substituting Eq. (2.29) into Eq. (2.31), one
has

a¢ At 2 a, At 2 (2.32)

In other words, (2/3)u¢ and (2/3)u_ are the Courant
numbers in the ¢- and r/- directions, respectively.

_(1)+ _0)- be defined byFurthermore, let _n , 11 ,-.',

_])_ dd= l--u¢--u. (2.33)

_r_)* d=_4"(1 -- V¢ -- ue)(1 + v¢) (2.34)

_rO)* d=_4-(1 -- U¢ -- U,)(1 + u.) (2.35)13

_(_), d=ef1+ u¢ (2.36)

o'(_)*_ :[:(1+ u¢)(2- u_) (2.37)

crO), __r +(I23 -i- u¢)(1 q- u,) (2.38)

¢(3_)* _f I + us (2.39)

o-(1)4"_f -4-(1-[-u,)(1-I-u_) (2.40)

o'_)*d=dq:(l+ u.)(2--u,_) (2.41)

,_]), d_ 1 -I"u_ + u. (2.42)

_r(])* d__e:[:(1 + PC+ U_)(1 -- U¢) (2.43)

.(2)±_ q:(1+ uc+ u.)(1 u.) (2.44)13

and

Note that:

_(_)* d__dI -- u¢ (2.45)

#(2)J- _ 4-(1 -- VC)(2+ u_) (2.46)

_r(_)_-d_ :F(1 -- u¢)(1 -- us) (2.47)

_r(32)4"_ 1 - u. (2.48)

cr(_)* _ :[:(1--v.)(1- u_) (2.49)

_r(2), dd 4-(1 -- u,)(2 + vs) (2.50)

(a)

(b)

Each of Eqs. (2.33)-(2.50) represents two equa-
tions. One corresponds to the upper signs while
the other, to the lower signs.

The definitions given in Eqs. (2.33)-(2.41) will be
used in the first marching step of the 2D a scheme;
while those given in Eqs. (2.42)-(2.50) will be used
in the second marching step. It is seen that the
expressions on the right sides of the former can
be converted to those of the latter, respectively,
by reversing the "+" and "-" signs. Moreover,

for every pair of m and _, _(1_- and cr(_- are

converted to _r(,,2_+ and _+, respectively, if u¢,
and ue are replaced by -u¢, and -u_, respectively.

To simplify the following development, let

(j,/_; 1,1) d=etj % 1/3, k + 1/3 (2.51a)

(j,/:; 1, 2) d=efj _ 2/3, k + 1/3 (2.51b)

(],/_; 1, 3) _ j % 1/3,/_ - 2/3 (2.51c)

(j,/_; 2,1) d_.efj _ 1/3,/_ -- 1/3 (2.52a)

(j, k; 2, 2) d_ej + 2/3, k -- 1/3 (2.52b)

(j, k; 2, 3) d=dj -- 1/3, k + 2/3 (2.52c)

Note that (i) (j, k; 1, 0, _ = 1, 2, 3, are the spatial mesh
indices of points A, C, and E depicted in Fig. 7(a),
respectively, (ii) (j,/:;2,£), _ = 1,2,3, are the spa-
tim mesh indices of points D, F, and B depicted in

Fig. 8(a), respectively, and (iii) the mesh indices on
the right sides of Eqs. (2.51a,b,c) can be converted to
those in Eqs. (2.52a,b,c) by reversing the "+" and "-"

signs.
Equations (2.12) and (2.13) are evaluated in [2].

With the aid of the above definitions, the results are
summarized as follows:



(a) Eq.(2.12)with t = 1:

[oil)+.+ (1)+..+_(,+..+1"+'/'0"x2 -¢ + "12 -_jj,_

_ ...(1)-u+ ± ...(1)-. +]"= 0"_)-" -, ,.12 ¢ -,-,'12 "'_Ju,_;1.1)
(2.53)

(b) Zq. (2.12)_ith t = 2:

[ (i)+., . (i)+.+
-i- 0"22 w( T u23 ,-qjj,k

[%1 _ ± _o)+.+1"+112
1

- [0"(2])-,,+ 0"(')-. + 0"()-u+l
- 22 "¢ + 23 ,_j 0,k;1,21).54)_"

(0 gq. (2.12)with t = 3:

r_o.)+u + _o)+.,+. _(1)+..+1-+1/2
LO31 °:i2 "¢ -- _ "' Jj,k

r..<.-,,_,.-,,+= ["Sl +"s2 ,: U, ;, )
(2.55)

(d) Eq.(2.13)withe= 1-

f_(2 _(2)+,+ _ ..(2)+. +1"+1

[_(2)-u - .(2)-. +..(2)-..+I .+i/2
= VlI _-v12 "c _ via -_ j O,k;2,1)

(2.56)
(e) Zq. (2.13) with _ = 2:

..(2)+. ±_(2)+..+ (2)+ +I "+I
•"21 --,-"22 _'¢ +0"_ %Jj,k

- [0"(:_)-u+ ...(2)-u+ ...(2)-u+1"+1/2- _22 _ + _13 _.10,k;2,2)
(2.57)

(f) _. (2.13) with l = 3:

_(2)+.+ _ _(2)+. +1"+Ir_(2L,,37+,,+,,=i2-c -'-"=".j._,,
(2) •"_"+112

[,.-(2)-- u _L __(2)--° + "4"0"33 --U_I

= V= -- _s_ -_ ., j 0,_;2,s).58),_

Here (j, k, n + 1/2) E fh is assumed in Eqs. (2.53)-
(2.55); while (j,k,n + 1) E f12 is assumed in

Eqs. (2.56)-(2.58). Also, to simplify notation, in the
above and hereafter we adopt a convention that can

be explained using the expression on the left side of
Eq. (2.56) as an example, i.e.,

[o.I:])+.,.,+(2)+..+ ..(,.)+.+1"+1o'1_. =( + ,'1s =-_Jj,k

F (2)+_ n+l -- (2)+, +,.+, _(2)+,.+,,.+,1
= L0"lz uj,k + o'12 tuc Jj,_ + '.'12 _,",7Jy,=:J

According to Eqs. (2.33)-(2.35), _11"(1)*, "1_'(1)_, and

0"_p_cont_na commonfactor(I-,_-,,). Slm_Ir.
each of three consecutive pairs of coefficients defined

in Eqs. (2.36)-(2.50) also contain a common factor. As
a result, one concludes that:

(a) Eq. (2.53) is satisfied by either 1 - _¢ - vn = 0 or

+_.+112
[_+(1+,_)_+(1+,,,,),,,,]_,,,

2I,,-o <,
(2.59)

(b) Eq. (2.54) is satisfied by either 1 -I-_¢ = 0 or

+1 -+1/2

[u- (2- =,'¢)u_-I- (1 + pb)u,_]j,,_

+"

(2.60)
(c) Eq. (2.55) is satisfied by either 1 + u_ = 0 or

+1 .+1/2

[u + (1 "4"v¢)u_ - (2 - vr_)%Jr,.

+"= [_- (1+_)_"+(2- ,,,,),,,,]o,_;1_)
(2.61)

(d) Eq. (2.56) is satisfied by either 1 + v¢ + vn = 0 or

fl+Z

[,,- (1- _()_ - (1- _'.)%+Jn,,

= +(1-,,,,),,,-,-]"+"'0,_12,1)
(2.62)

(e) Eq. (2.57) is satisfied by either 1 - _¢ = 0 or

+1 .+1

[u -I- (2 "1"v,;)u_"- (1 - v.)u,_b,,=
+'l .+1/2

= [,,- (2+,,,:),¢+(1- ,,.,),,,,j_,,,,;,,:,)
(2.63)

(f) Eq. (2.58) is satisfied by either 1 -- _ = 0 or

+1n+1

[u -(1 - v()u_ + (2 + v.)'% ]_,_

= [u -I" (1 - v¢)u_ - (2 + v_,)'% JO,,_;.,s)
(2.6,,)

Here (j,/_, n + 112) e _I is assumed in Eqs. (2.59)-
(2.61); while (j,k,n + 1) _ t_2 is assumed in
Eqs. (2.62)-(2.64). The current 219 a scheme will
be constructed using Eqs. (2.59)-(2.64) /.stead of



Eq_.¢2.53)-(2.SS).Note that Eqs.(2.59)-(2.64)in_
ply Eqs. (2.53)-(2.58). However, the reverse is false
unless one assumes that

[1- (.c + _,)'] (1- _) (1- _) _ 0 (2.65)

Note that the expressions within the brackets in

the first three equations in Eqs. (2.59)-(2.64), respec-
tively, can be converted to those in the last three by
reversing the "+" and "-" signs.

Let s O), sO), s(1), s_2), s (_), and s(2) denote the
expressions on the right sides of Eqs. (2.59)-(2.64),
respectively. Then it can be shown that Eqs. (2.59)-

(2.61) are equivalent to

_jn+l/2
,k -"

]I [(I - u¢ - u,)s (I) + (1 + uC)s O) + (I +//_/)8£ 1)]

(2.66)

( +.n+I/2 l(s_1 ) s(1)) (2.67)uc )._,k = ] -

and

( +,n+V2 1 Is_1) s(al)) (2.68)% )#,k = ] -

where (j, k, n + 1/2) E t_1. Also Eqs. (2.62)-(2.64) are
equivalent to

1_n+l
,k -"

1
+ (1- p,)s (_) (1 p.)s (2)][(1+ vc + + -

(2.69)
(2.70)(o.+,n+1 1 (8(2) s(_))

and
(..+_n+1 1
",_,._.k----_ (8(',-s(2)) (2.71)

where (j, k, n + 1) E f/2.

For any (j, k, n) E _, let

¢(j, k,n) _-_ ,,_" (2.72)

Let the 3 × 3 _trices Q_k), k = 1,2, and l = 1,2,3,

be the special cases (e = 0) of the more general Q_)
defined in See. 3. Then Eqs. (2.66)-(2.68) can be ex-
pressed as [2]

_'(j, k, n + 1/2) -- Q_I)_.((j, k; 1,1), n)

+ OO)_((j, k; 1, 2), n) (2.73)

+ Q(x)C((j, k; 1,3), n)

where (j, k,n + I/2) E t_1. Also, Eqs. (2.69)-(2.71)
can be expressed as [2]

_'(j,k, n + I) = Q_2)_.((j,k;2, I),n + 1/2)

+ O_)¢((j, t; 2,2),. + 112)

-i-O(2)_.((j,k;2,3),n + 1/2)

(2.74)

where (j, k, n + 1) _ fl:_. The marching procedure in
the 2D a scheme is formed by applying the marching
steps defined by Eqs. (2.73) and (2.74) successively.

The 2D a scheme has several nontraditional fea-

tures. They are summarized in the following com-
ments:

(a) The 2D a scheme has the simplest stencil in each
of their two marching steps, i.e., a tetrshedron in
3D space-time with one vertex at the upper time
level and the other three vertices at the lower time
level.

(h) Each tithe conservation conditions Eqs. (2.53)-
(2.58) represents a relation among the marching
variables associated with only two neighboring
SEa. This is a fundamental difference between the
current method and other traditional methods.

(c) It is shown in [2] that the 2D a scheme is neutra//y
stable if

(d)

Ivd < 1.5, lunl< 1.5, and lu( +vnl < 1.5.
(2.75)

As depicted in Fig. II, the domain of stability de-
fined by Eq. (2.73) is a hexagonal region in the

v(-v,_ space. Moreover, it is also shown in [2]
that Eq. (2.75) can be interpreted as the require-
ment that the physical domain of dependence of

Eq. (2.1) should fall within the numerical domain
of dependence.

It is shown in [2] that the 2D a scheme has the
following property, i.e., for any (j, k, n) Efl,

_'(j, k, n + 1) --+ _'(j, k, n) as 4t --* 0 (2.76)

if a=, a_, w, b, and h are held constant. This
property usually is not shared by other schemes
that use a mesh that is staggered in time, e.g., the
Lax scheme [15].

(e) The 2D a scheme is also a two-way marching
scheme [2]. In other words, the same flux conser-
vation relations Eqs. (2.12) and (2.13) can be used
to construct the backward time-marching versions

of the 2D a scheme [2].

This section is concluded with the following re-
marks:
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(a) the2Da scheme is only a special case of the 2D
a-p scheme described in [2]. It is a solver for the
2D convection-diffusion equation

au {a2 a2u 
+ aye/=0 (2.77)

where a=, ay, and p (>_.0) are constants. Note
that this solver, as in the case of its 1D counter°
part, is unconditionally stable if a= -- ay -- 0.

(b) It should be emphasized that, with the aid of
Eqs. (2.19)-(2.22), (2.24), and (2.25), the 2D a
scheme can also be expressed in terms of the
marching variables and the coefficients tied to
the coordinates (z,y). In other words, the co-
ordinates ((, r}) are introduced solely for the pur-
pose of simplifying the current development. The
essence of the 21) a scheme, and the schemes to

be introduced in the following sections, is not de-
pendent on the choice of the coordinates in terms
of which these schemes are expressed.

3. The 2D a.e Scheme

The 2D a scheme is neutrally stable and reversible
in time. As explained in Sec. 1, such a scheme cannot
be extended to become an Euler solver. As a result, it
will be modified to become the 2D a-e scheme. Here c

represents a special parameter that controls numerical
dissipation.

To proceed, note that the CEs used in Sec. 2 will
not be used in this section. AS a result, Eqs. (2.12) and
(2.13) will no longer be assumed. Instead, the CEs to
be used are

+112)d=., k,.+112)j'CE(1)(j, lc,n U

+ u +
(3.1)

where (j,k,n + 1/2)E f/l,and

CS(_)(j,k,n + 1) d_ [CE_2)(j,k,n + 1)] U
(3.2)

where (j, k, n+l) E _/2- We shall assume that the total
flux leaving the boundary of any new CE vanishes, i.e.,

_s(cB(')O,i,,.+ll2)) _*" d_"= 0, (3.3)

and

•_s(ce(_)(j,k,n+l)) _*" dg-- O. (3.4)

Obviously, (i) Ea can be filled with the new CEs, and
(ii) the total flux leaving the boundary of any space-
time region that is the union of any new CEs will also
vanish.

Moreover,itcan be shown thatEqs. (3.3)and

(3.4),respectively,areequivalentto Eqs.(2.66)and

(2.69).

Proof: By subtracting the expressions on the right

sides of Eqs. (2.53)-(2.55), respectively, from those
on the left sides, and then multiplying the results by

2wh/3, we obtain the fluxes leaving CE_I)(j,k, n +

1/2), CEO)(j, k, n + 1/2), and CEO)(j, k, n + 1/2),

respectively (see Appendix A in [2]). Because the
flux leaving an interface from the CE on one side is
the negative of that leaving the same interface from
the CE on the other side, it is easy to see that the
flux leaving CEO)(j,/c, n + 1/2) (which is the union of

CEO)(j, k, n-I- 1/2), l = 1, 2, 3) is the sum of the fluxes

leaving CE_X)(j,k,n + 1/2), t = 1,2,3. Thus, the flux

leaving CEO)(j, k, n + 1/2) can be obtained by sub-
tracting the sum of the expressions on the right sides
of Eqs. (2.53)-(2.55) from that on the left side, and
then multiplying the result by 2wh/3. Furthermore,
we have

,_I)'_ + _(kl)± + _r(_)± -- 3, k = 1,2 (3.5)

and

(t)_- .J_)_-

-_z3 +"28 --":m =0, k=1,2

With the aid of the above considerations, and the fact

that the expressions on the left sides of Eqs. (2.53)-

(2.55) are all evaluated at the same mesh point
(j,k,n + 1/2), it becomes obvious that Eq. (3.3) is

equivalent to the statement that u_ 1/2 is 1/3 of the
sum on the right sides of Eqs. (2.53)-(2.55). By using

Eqs. (2.33)-(2.41), we arrive at the conclusion that
Eq. (3.3) is equivalent to Eq. (2.66). By invoking
a similar argument involving Eqs. (2.56)-(2.58), and
(2.42)-(2.50), we also conclude that Eq. (3.4) is equiv-
alent to Eq. (2.69). QED.

AS a result, Eqs. (2.66) and (2.69) are shared by
the 2D a scheme and 2D a-_ scheme. In this section

we shall describe how the other equations in the 2D a

scheme i.e., Eqs. (2.67), (2.68), (2.70), and (2.71), can
be modified such that the numedcai diffusion of the re-

suiting new scheme can be controlled by an adjustable
parameter _.

To proceed, for any (j, k,n+ 1/2) E f_x, let

um+xl2 de_( 4t ,_n
(j,t;z,z) -- \u + _u_ (3.7)- 2 JO,_;_,O
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_0n4-1/2
where t- 1,2,3. By their definitions, uO,t;zj ) can be
consideredas the finite-difference approximations of u
at ((j,k;1,O,n + 1/2), t = 1,2,3. With the aid of
F_s. (2.2e), and (2.29)-(2.31), Eq. (3.7) imp_es that,
for l-- 1,2,3,

uO,k;z,O (3.8)

In Fig. 12(a), P, Q, and R are three points in the
_-_u space. Using the coordinates given in the same
figure and Eqs. (2.51a)-(2.51C), it can be shown that
these points axe on a plane represented by

I n+l/2 • t n+1/2 L..%± an+l/2

u = (u¢)_,k ((--3A_) -I'(%)j,k (T/-- ,,,,...,,,,-x---.:.,(3.9)_
where

and

uj,,.+l/2 1 / e.+1/2 _ _,,.+1/2 _ ,'n+112
,k -- _ _uO,k;1,1)"1-u(j,k;z,_) -I"uo,k;z,a)j (3.10)

(..I xn+Z/2 /' _,n+112 _ en+l/2
.¢jj,_ = _u(j,k;;,; ) - uO,k;z,2))/_¢ (3.11)

(,/_n+z/2 / ,,n+z/_ . i.+zl_ '_
-e/j,_ = _u(j,k;z,1) -"(j,k;z,s)]/ATI (3.12)

Equation (3.9) implies that point 0 depicted in
Fig. 12(a) is also a point on the plane that contains
P, Q, and R. Moreover, for every point on the plane

represented by Eq. (3.9), including point O, we have

= ;c,C].i,k , and "- _'_nij,k
,1 ¢

(3.13)
u_ n+l/2As a result of the above considerations, j,_ ,

¢ t xn+X/2 _ I n+1/2
(%):,_ can be conmdered as theLu¢)_,t , ann

finite-difference approximations of u, Ou/O_, and
Ou/Oq at the mesh point (j,k,n + 1/2), respectively.

. n+1/2
Note that u_.._+_/2 generally is different :tom uj,_
which is defi_ned by Eq. (2.66). Because Eq. (2.66) is

equivalent to the conservation condition Eq. (3.3) and

thus a fundamental part of the 2D a-e scheme, U_,k+z/2
will not be used in the future development.

To proceed, let

(.,i-[-_n+1/2 clef A_ [o t _n-i-1/2 (3.14a)

and
. o+xn+l/2 def 1

where s (z), s(1), and s (z) are the expressions on the
right sides of Eqs. (2.59)-(2.61), respectively. Sev-
eral comments can be made about Eqs. (3.14a,b) and
(3.15a,b):

(a) Eqs. (3.15a,b) simply say that the expressions on
the right sides are denoted by the notations on
the left sides, respectively. Contrarily, Eqs. (2.67)
and (2.68) say that the marching variables on the
left sides are assigned the values of the expressions
on the right sides, respectively.

(b) Because the expressions on the right sides of
Eqs. (3.15a,b) are functions of the marching vazi-

[. o+_n+112
ables at the nth time level, so axe _"C }J,_ and
. o+_-+Zl_
"'_ _._,k "

(c) Eqs. (2.30), (2.07), (3.13), (3.14a), and (3.15a)

imply that both (u_+),.+x/2 and (u¢"o+,n+z/2)j,_are
numerical analognes'oi_'_u/O_ at the mesh point

(j, k, n + 1/2), normalized by _(/6. Similar

interpretations can be given to (u_+)_._z/_ and

( o+xn+Z/2
U_ )j,k "

_+ n+1/2 _+ _+1/2
(d) (u-)._ and (%).k - axe defined as a re-3, . J, ....

s_t of a geometric constructxon mvolvmg flare-

difference approximations. Generally, nuraeri-
ca] dissipation will be introduced as a result of
using such numerical analogues. On the other

hand, and (.'+)". emerge*oreJ,/_ . .
the development of the 2D a scheme which is free
from numerical dissipation. In the following, the
2D a-_ scheme will be constructed such that (i)
( +,n+z/_ ^¢ r./+_n+II_
u¢ )j,_ is a weighted average ... x"¢ ;/,l: and

(.,o+_n+1/2 with the weight factors 2e and 1 - 2e,-¢ ;j,+t

respectively; and (ii) (u + )7_z/2 is a weighted aver-
_+ n+z/2 o+ n+z/2 • •

age of (%).,_ and (%).,_ w_th the wezght
factors 2_ and 1- 2e, respectzvely. As a result, nu-

merical dissipation may be controlled by varying
the value of _.

To proceed, for any (j, k, n + 1/2) e f_z, let

(._. +xn+xl2 _2 [¢-'+_"+z/2 , o+,n+z121
--¢ ;._,_ L_-¢ ;j,k - tu¢ )j,z_ ] (3.16)

and

(.j+in+Z]2 def A_ S xn+l/2
•.,_ ;j,_ = "-_'-Luq)._,_.

.,o+,xn+t/2 ddl( (I)- S(1)).¢ ;._,+ = _. s

(3.14b)

(3.15a)

(ao,+_n+xl_ a...eto ['r.,,+,_n+xl2 r. o+,_,+zl_| (3.17)

Then, with the aid of Eqs. (3.8), (3.11), (3.12),
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(3.14a,b), and (3.15a,b), one has

ta. +_,+1/_ 1 + 4u_" 2u+)0,_;1,_ )_'_"(Yj,k • -" _ U

-- _ 4. n

and

. 4.,.+112 1[( 4- +4u+_ nau,_)y,k = _ u - 2u¢ " ;0,_;*,s)

- 1
" / (j,/;;1,1)J

(3.18)

(3.19)

4. n-i-l/2 + 94.1/2 •
Thus both (du- )._ and (du n )",k are functions3 J .
of the march/rig variables at the nth hme level. As
will be shown shortly, they play a key role in the first

marching step of the 2D a-e scheme.

Next we consider Fig. 12(b). For any (j, k, n+l) E
f12, let

,,_ _.+1/2. e n4.1 def 2 ) (j,k;2,0
"(j,k;2,0 = u-l- --u= (3.20)

where £ - 1, 2, 3. Then it can be shown that

+_I-+I/2r / .,_

..(,,_;,_).,'-+'_-Lu-2L_,cu_-+ _,,,u,)jo,k;2,o(3.21)

In Fig. 12(b), the points P, Q, and R are on a
plane represented by

and

. '4"1"4"1 def AT, , In4.1 (3.26b)

.,o4.,,.,=4.1ddl (S(,) S(,)) (3.27a)-¢ /j,k = _ --

(. o4.V_4.'d. 1 ( (:¢) (3.27b)-,, ,y,_ = _ s(s_>-8

where and arethe pre=ionsonthe
right sides of Eqs. (2.62)-(2.64), respectively. Because
these expressions are functions of the marching vari-

ables at the(. + 1/2)thtimelevi, 80_ (u_4");,_+'
and(u,_4");'_*_.

With the above preparations, the current coun-

terpartsto Eqs. (3.16) and (3.17) are

(du4.V,*__r21.,,4.v,4._ ,-**_"+q (3.28)¢ J._,k LX'-¢J_,,. - _,,¢ y_,,.j

and

,4o,4"1"4"1 def[(. ,4._n4"1 (o o+v,+,] (3.29)

respectively, where (j, k, n + 1) E f_. With the aid
of Eqs. (3.21) and (3.24)-(3.27a,b), Eqs. (3.28) and
(3.29) imply that

= [( +x,+t/+ra. +_,+t 1 2u_ 2u

+x,;+U_ l
- (u-4u_ + 2% ) (j,/_;2,2)J

(3.30)

and

u (u_)_=,+z(<__=¢)+ , .+_ .,,.4._

where

t.j,,*+t d_ 1 (. ,n+; . ,r,+t '"+; -_ (3.23)
,* = _ _=0,*;2,1) ÷ "0,_,;,,2>+ uo,k;,,s,

and

(./In4"1 def [ en4.1 . o,In4.1
"(Jj,k -" LU(j,_:;2,2) --='(j,J:;2,1)) /A(, (3.24)

./in+l def [ en+l en+l '_
=,_y,k = _uo,k;=,a) - uo,_;_,;))/Aq. (3.25)

Moreover, the current counterparts to Eqs. (3.14a,b)

and (3.15a,b) are

. _4._n4.1 def _ _ t x_4.1

,.¢ /._,_ = --_-_uc.)j,t (3.26a)

(a. 4.v*4._ I[( 2u_ ÷2u_) '=4"t/2

4. 4.X n4"1/2 1
- (u + 2u. -- 4u. l l

• " / (jJ';2,S)J

(3.31)

Thus both (du+ )?+_ and (du+ )_,+_ are functions of the
._ , 3 .

march/rig vana/_Je._ at the (n + 1/2)th tune level.

The 2D a-_ scheme can now be stated using the

above definitions. It consists of two marching steps.

The first is formed by Eq. (2.66),

+..+t/:e = (uO+).+V= -- .- +.,=+_/_ (3.32)

and

( .+V*+;/: e_ (.,o+,_-+V= _1_,,r,_ .+_.=+x12 (3.33)

where (j,k, n + 1/2) E t_. It was explained earlier
that the expressions on the right sides of Eqs. (3.32)
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and (3.33) are functions of the marching variables at

the nth time level. Moreover, according to Eqs. (3.16)

and (3.17), Eqs. (3.32) and (3.33) can also be expressed
as

( +,,n+ll:_ e+ n+l/:_ + n+1/2
"( Ji,_ =(u( )j,_ ÷ (e-- 1/2)(d,,c )i, k (3.34)

and

(+,n+1/2 tu,+_n+11__tc lm_r':-+'_"+l/2 (3.3,5)

respectively.

The second marching step is formed by Eq. (2.69),

(.,+In4.1 /'_,o+_n+l + n+l-c = + c du([ (3.36)

and

(.,+_n÷l [.,04._n-{-1 4. n4.1+ [,J (3.37)

where (j, k, n + 1) E G2. It was explained earlier that

the expressions on the right sides of Eqs. (3.36) and
(3.37) are functions of the marching variables at the

(n ÷ 1/2)th time level. Furthermore, according to

Eqs. (3.28) and (3.29), Eqs. (3.36) and (3.37) can also
be expressed as

4.xn4.1 _ [..:4._n-!-1 (¢ _ 4- n4-1u¢ )j,k -- _"¢ O,k + 1/2)(du_ )j,k , (3.38)

and

(oo+_n+l __ [..l+_n4.1 u I_, q Jj,k '"_ _j,k -- _"_ O,k + (c-- 1/2_rdu +_"4.1 (3.39)

respectively.

At this juncture, note that:

(a) With the aid of Eqs. (3.15a,b) and (3.27a,b), it is

seen that Eqs. (3.32), (3.33), (3.36), and (3.37),

respectively, are reduced to Eqs. (2.67), (2.68),

(2.70), and (2.71) when e = 0. As a result, the
2D a-e scheme becomes the 2D a scheme when

_" "-" 0.

(b) For the special case with e = 1/2, Eqs. (3.34),

(3.35), (3.38), and (3.39) are reduced to the
forms that represent the finite-difference approx-

imations defined in Eqs. (3.11), (3.12), (3.14a,b),

and (3.24)-(3.26a,b). However, Eqs. (2.66) and
(2.69), which are independent of e and therefore

always part of the a-e scheme, are the results of

the flux conservation conditions Eqs. (3.3) and

(3.4).

(c) With the aid of Eqs. (2.30) and (3.18), Eq. (3.32)
can be rewritten as

_n+l/_ __ 1/_=

(3.40)

Let (i) u_,_;_,_), (uc)_,tp,_) and (%)_,_;_,_) be
identified with the values of u, OulO¢ and OulOq

at the mesh point ((j, k; 1,2), n), respectively; and

(ii) U_,k;1,1) , (U¢)_,k;1,1) and (_)_,t;z,x) be iden-

tiffed with the values of u, 0u/0¢ and Ou/O9

at the mesh point ((j, k;1,1), n), respectively.

Then it can be shown that the expression within

the brackets on the right side of Eq. (3.40) is

O(_,_). Furthermore, because Eq. (2.28) is

applicable within SE(j, k, n) only, the expression
that is enclosed within the first bracket on the

right side of Eq. (2.28) is O(_, &g). From the

above considerations, one concludes that the ad-
dition of the extra term involving e on the right

side of Eq. (3A0) may result in errors that are sec-

ond order in _, _/, and _t. In other words, the
addition of the term involving e does not result

in a scheme of lower order of accuracy. A similar

conclusion is also applicable to Eqs. (3.33), (3.36),

and (3.37).

(d) Equations (3.11), (3.13) and (3.14a) imply
_+ n+1/2

that (u)_ _ is proportional to the directional¢ ,
derivative along the (-direction on the plane that

contains points P, Q, and R which are depicted in

Fig. 12(a). According to Eq. (3.16), r,_, +_"+_/2
[o.04.1n4.1/2

is twice the difference between _'C ]J,_ and its
counterpart in the 2D a scheme. Note that the

variable (du=)_, that appears in Eqs. (3.2) and
(3.10) of [1,9], plays a role in the 1D a-e scheme

similar to that of (du+._? +_/_ in the[1,9] present

2D a-e scheme. It can" "_'=be_s_0wnthat (du=)_ is

equal to the difference between two slopes. The

first slope is the central difference given on the

right side of Eq. (3.10) in [1,9]. The second slope
is the counterpart of the first in the 1D a scheme.
Thus the 2D a-e scheme is a natural extension of

the 1D a-e scheme.

The a-e scheme will take the form of Eqs. (2.73)

and (2.74) if the 3 × 3 matrices Q_k), k = 1,2, and

= 1,2,3 take the form to he specified immedi-

ately. Because of the limitation imposed by the cur-

rent double-column format, their elements can only
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be specified row by row, sequentially. Furthermore,
for the sake of simplicity, the elements of the matrices

3Q_k) will be listed:

3Q(I): 1 - v¢ - v., -(1 - vc - v.)(1 + re), -(1 - vc -
v_)(1 + v_), 1 - e, -(1 + vc - 2e), -(1 + v. - 2e),
1 - e, -(I + v¢ - 2e), -(I + v_ - 2@

3Q(_I): l+v¢, (l+v¢)(2-v¢), -(1+_c)(l÷v.), -(l-e),
-(2 - v_ - 4e), 1 + v_ - 2e, O, O, O.

3QO): 1 + v., -(1 + v.)(1 ÷ v(), (1 ÷ v,)(2 - v.), 0, 0,

O, --(1 - e), 1 + v¢ - 2e, -(2 - v, - 4@

_): l+v¢+v_, (l+v¢+v_)(l-v¢), (l+v¢+vq)(l-v_),

--(1 -- e), -(I - v¢ - 2e), -(I -- v_ - 2e), -(1 - e),
--(I -- v¢ - 2e), -(I - v_ - 2@

3Q(z2): I-v¢, -(I- vc)(2+ re), (I- vc)(l- v_), 1-c,
-(2 + v¢ - 4e), 1 - v. - 2e, 0, 0, 0.

3Q(2): 1 - v_, (1 - v.)(1 - re), -(1 - u.)(2 -k v.), 0, 0,

0, 1 - c, 1 - vc - 2_, -(2 + v_ - 4@

It is shown in [2] that (i) the 2D a-e scheme is
unstable if e < 0 or c > 1, and (ii) numerical diffusion
increases as ¢ increases, at least in the range of 0 <
c _ 0.65. In order to suppress numerical oscillations
near a discontinuity, one may be forced to choose a
large e. However, with such a choice, the smooth part
of a solution may become highly diffusive. To resolve
this dilemma, in the following, we shall construct a
generalization of the a-c scheme.

To proceed, let (j,/_,n + 1/2) E f_l and con-
sider Fig. 13(a). This figure is essentially identical to
Fig. 12(a) except that point O in the latter is replaced
by point O* in the former. The coordinates of point

O* are (jA(,kZ_, u';,+1/2) where u_,k+x12 is defined in
/ , 1Eq. (2.66). Thus pomt O generally is not on the plane

that contains points P, Q, and R. Let planes #1, #2,
and #3, respectively, be the planes containing the fob
lowing trios of points: (i) points O*, Q, and R; (ii)
points O*, R, and P; and (iii) points O*, P, and Q.
Then in general these planes differ from one another
and from the plane that contains points P, Q, and R.
In the following, first we shall study the former three

planes.

As a preliminary, let

dec en-1-1/2 _ n-1-1/2
zz = ufj,k;1,z) - uj,_ , t = I, 2, 3 (3.41)

( .(2)v,+112_t (2=1 + zs)/a_ (3.44)"¢ Pi,k

(.,(2)_.+112d__
-_ J_,k - (zl - zs)/a_ (3.45)

. (sL.+II2 dec
"c ,s,k = (zl - x2)la¢ (3.46)

and

(,,(3)1.+1/2 d_ef (2Zl + ¢2)/A_ (3.47)
-_ Ij,k --

Moreover, for t = 1,2,3, let

(U(cl))_,_l/t2 deC t (/.)'_n-1-112 (_¢ - ,' (-a)'_n'l'I/t2 O_ (3.48)

and

( .(O,_,,+z/2deC, (,),,,+1/:_ _ +(u(O)';+ll' arl (3.49)

With the aid of Eqs. (2.20) and (2.22), we have

"¢ _. (z)_.+zl_ _ (.,(,,),_.+x12 (3.50)= + "

and

( (Z)'_n'l'll2 (10 4" b)A¢ t' o(_'),_n-F1/t2

(3.51)

+ _'g _-. ,_._

Combining gqs. (3.42)--(3.47) with Eqs. (3.50) and

(3.51), one has

(.,0)_-+I12__ ,_._ =- (_2 + =.,) (3.52)

( 0),-+1/:_ (35 + w)z2 + (3b - W)Zs
% )J,_ = 2wh (3.53)

3zl (3.54)

. (_hn+ll2 (3b "t-w)zl + 2wzs (3.55)
"_ _,i,_ = 2wh

. (1)_,-+1/_ def _(2Z 2 "1"Zs)/A¢ (3.42)-¢ ;j,_ =

n+112 dec __(Z2 "!" 2Zs)/Ar/ (3.43)
U,z =

and

3zl (3.56)

. (sh.+xl_ (w - 3b)zl + 2wz2 (3.57)
"_ _,_ = 2wh
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With the above preparations, it can be shown
that, for each t = 1,2,3, plane #l is represented by

t. (t)_,+1/2
u = v,.,¢J._,k (¢ - jA¢) -,--tru(0'm+v2,_J._,k ('1- k,,_)

_ .+11_
+ ui,_ ,

(3.58)
if the coordinates (_, 7) are used. Alternatively, it is
represented by

,r.,(t),_-+V2(z - z_,k)+ lu (l)'L"+l12"u -- x-= ;j,_ _ y pj,l: _Y- Yj,kl

un+V2"t- j,k ,
(3.59)

if the coordinates (z,I/) are used. Using Eqs. (3.58)
and (3.59), one concludes that, at any point on plane
#t, £-- 1,2,3, we have

(0_) t. (z)._.+ll:e= _..¢ Jj,,_ ,
q

and

and
,¢

(3.6o)

,,,.= (u(0)_',+ and au ,..(z),n+ll2
_z y = t"_-#,k

(3.o;)
Note that Eq. (3.60) is the current counterpart of
Eq. (3.13) which is applicable to any point on the plane
that contains points P, Q, and R. Let Vu be the gra-
dient of u. Then Eq. (3.61) implies that, at any point
on plane #t, t -- 1,2,3, we have

IVul=t.j,k = (u(_ (u
j,k

(3.62)
To proceed further, we introduce the current

counterpart of Eqs.,(3.14a,b), i.e.,

( (O+..+1/2 d_ _ r ,(z)_.+112
u( )j,k = Tx-( O,k (3.63a)

and
(,,(Z).l._n+l/2 de[ Alr],, (0,n+1/2
-_ J,_,, = -E'_% ;._,k (3.63/,)

Then Eqs. (3.11), (3.12), (3.14a,b), and (3.41)-(3.47)
imply that

. ,+,-+112 1 u_2)+ + u(s)+] ''+1/2 (3.64)

and

.,,+,re+l/" 1 u_2)+ + u(S)+].+ll2 (3.05)-. ,_,_ = _ [41)++ ,, j,,.

i.e., (i) u_+ is the simple average of u[t)+, t = 1,2,3.

and (ii) u_+ is the simple average of u_(0+, t : 1,2,3.
Note that, for simplicity, hereafter we may suppress
the space-time mesh indices if no confusion could oc-
cur.

The first marching step of the generalized a-¢

scheme will be formed using Eqs. (2.66), (3.34), and
(3.35) except that (i) u_+ in Eq. (3.34) is replaced

by a nonlinear weighted average of u_l)+, t = 1,2,3,

and (ii) _+ in Eq. (3.35) is replaced by a non//near

weighted average of u (z)+, £ = 1,2,3. The design of

these weighted averages will be guided by the require-
ment that the weight assigned to a quantity associated
with plane # £ is greater if _ is smaller. This require-
ment is similar to that used in the construction of an

1D Euler solver described in [1,9].

To proceed, for any e _> 0, we shall define u_ +

and u_ +, the weighted-average counterparts of u_+ and

uv_+, respectively. Let

u_'+ = 0, if 01 = 02 = Oa= 0; (3.66a)

and

u;+= (°'°_)°u_l)++ (°_°')=u(_2)*+(°'°')°u_s)*
(01o2)"+ (o2os)_ + (osel)°

(3.66b)
otherwise. Also, let

u_'+ = 0, if 01 = 02 = Oa= 0; (3.67a)

and

(o,os),,u(,,')+ + (o_ol)=u(,,2)*+ (oio2),,u(,,s)+
u_'+ =

(0102) °_ + (0203) a '-]- (0301) a

(3.67b)
otherwise. Note that the denominators of the f_actions

on the right sides of Eqs. (3.66h) and (3.67b) vanish
if (_ > 0, and any two of 01, 02, and 0s vanish. Thus,
consistency of the above definitions requires the proof
of the proposition: 01 = 02 = 0a = 0, if any two of 01,

02, and es vanish.

Proof: As an example, let 01 = _2 = 0. Then

Eq. (3.62) implies that u(0 = u(0 = 0, £ = 1,2. In

turn, Eqs. (3.52)-(3.55) imply that zl = z2 = za = 0.
_s = 0 now follows from Eqs. (3.56), (3.57), and (3.62).
QED.

As a result of Eq. (3.66b), we have

{ u_l),,
u_3)+,

if 01 --" 0, 02 > 0, and 03 > 0;

if 02 = 0, 01 > 0, and 0s > 0;

if 0s = 0, 01 > 0, and 02 > 0.
(3.68)
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Assuming0L> 0, t-- 1,2,3, we have

1)+.1.(1/o,)au + (1/os) u 3)+
= (i/0x) + (1/82) + (1/83)

(3.69)

Thus the weight assigned to u_0+ is proportional to
(1/e_)% By using Zqs. (3.64), (3.66a), and (3.69), one
arrives at the conclusion that

u_ + - uS+, if 01 -- 02 - Oa. (3.70)

and

,, (l)'_n"l'l def ,, (L)'xn-I-1 O( -- (U(l))n..F1 _ (3.79)

With the above definitions, Eqs. (3.50) and (3.51) re-
main valid if each upper index n -F 1/2 is replaced by

n -t-1. As a result, Eqs. (3.72)-(3.77) imply that

. O)_-+x 3
,i,k = + (3.80)

Obviously Eqs. (3.68)-(3.70) are still valid if each sym-
bol ( is replaced by the symbol 7.

On the smooth part of a solution, 01, 02, and 03

are nearly equal. Thus the weighted averages u_ + and

u_ + are nearly equal to the simple averages uS+, and

%'+,respectively (see Eqs. (3.64) and (3.65)). In other
words, the effect of weighted-averaging genera//y/s not
discernible on the smooth part of a solution.

Next let (j, k, n÷ 1) E _2 and consider Fig. 13(b).

The third coordinate u_ x of point O* is that defined
in Eq. (2.69). Let planes #1, _2, and #-3, respectively,
be the planes containing the following trios of points:
(i) points O*, Q, and R; (ii) points O*, R, and P; and
(iii) points O*, P, and Q. In the following, we shall
study these planes.

As a preliminary, let

clef. ,n+x .,,+t t = 1,2,3 (3.71)Yl -- u(j,/_;2,/) ---'j,/_ ,

. (1)xn+l def "2"( ]j,k -- L Y2+ y3)/4_ (3.72)

. (1)'tn..F1". ,j,k _ (92 + 2y3)/A_ (3.73)

( (2)xn+l def "2u¢ )i,_ = -_ Yx .1.Y3)/_( (3.74)

(.,(2)_n-l" 1 def
",1 ,j,k -- (_ -- yl)/A_ (3.75)

(3),.n%1 def
u¢ )j,k = (y2-#l)/z_ (3.76)

and

(.,(3)_.+z _ --(2y1 + y2)[z_ (3.77)
-_ )j,k

Moreover, for t = 1,2, 3, let

.(t)_n+lderr .(Ovz+10_ /.(1)_n+1Oq (3.78)

(.,O)_n+x (3b -t-w)92 .1. (3b - w)ya (3.81)
"_ /j,k = 2wh

.0)'_-+1 3yx (3.82)
"z /j,k = 2tu

. (2)_.+x (3b + w)0x + 2w_ (3.83)

and

. (3)_.+z 3Yz (3.84)

( (3),.+1 (w - 3b)oz ÷ 2wy_ (3.85)
u_ )j,t = 2wh

With the above preparations, the earlier develop-

ments that involve Eqs. (3.58)-(3.70) can be repeated
for the current case with the only change being the re-

placement of each upper index n÷1/2 by n÷l. Partic-

 arZy, and(u +)Zp canbedefinedusing
Eqs. (3.66a,b) and (3.67a,b) with the understanding
that each symbol in these equations is associated with

the mesh point (j,/_, n + 1).

The generalized a-¢ scheme, referred to as the
weighted-average a-_ scheme, can now be stated. It
consists of two marching steps. The first is formed by
Eq. (2.66),

(u_')]_ 1/2 = (u_+)'_ll2.÷(e-1/2)(du'_)_._ 112 (3.86)

and

(u+)_.,_+_/' -- (u_+)],+ll_.÷((-1/2)(du+)]_Xl2 (3.87)

where (j, k, n .1. 1/2) E f_l. The second is formed by
Eq. (2.69),

'_n+l = [.,w+_n+l / /X'"(/j,k"¢;_i,_ _'( _,_ + (_ - 1/2_'a"+'t"+x (3.88)

17



and

(%-I')_',+kx= (u_'+)_,+1 4- (e - 1/2)(du+n)';_ 1 (3.89)

where (j, k, n 4- 1) E f12.

Note that, according to Eq. (3.62), evaluation of

(01) a does not involve a fractional power if a is an
even integer. Because a fractional power is costly to
evaluate, use of the generalized a-e scheme is less costly
when cg is an even integer.

4. The 2D Euler Solvers

We consider a dimensionless form of the 2D un-

steady Eu]er equations of a perfect gas. Let p, u, v, p,

and 7 he the mass density, z-velocity component, y-
velocity component, static pressure, and constant spe-
cific heat ratio, respectively. Let

u1=p, u2=pu, us=p_ (4.1a)

and

u4 -- P/(7 - 1) 4- p(u 2 4- v2)/2 (4.1b)

f_ - u2, (4.2)

f_ = (7 -- 1)U4 + (3 - 7)(u2)2/(2u_) (4.3)
- (7 - 1)(_s)_/(2u_)

f_ = u_us/u1, (4.4)

f_ = 7u2u4/ul (4.5)
- (i/2)(7 - 1)u2[(u_)_+ (_3)_]/(u_)_

f_ = us, (4.6)

fl -- u2 us/u1, (4.7)

fa_ = (7 - 1)u4 4- (3 -- 7)(ua)2/(2ul) (4.8)
- (7 - 1)(u2)2/(2ul)

= 7u3u4/u;

-(112)(7-1)u_ [(u,)2+ (us)_]ICu_)_
(4.9)

Then the Euler equations can be expressed as

au_ aa_ a_"-0_"4- 4--_y--y-0, m= 1,2,3,4 (4.10)

The integral form of Eq. (4.10) in space-time E3 is

_s h,_. dg- 0, m - 1,2,3,4 (4.11)
(v)

where

_m def-- (f_,f_m, Um), m -- 1,2,3,4 (4.12)

are the space-time mass, z-momemtum component, y-
momemtum component, and energy current density
vectors, respectively.

As a preliminary, let

l_j d-e-raf,_lauz, and l_,z d=daJWmlauL (4.13)

where mJ = 1,2,3,4. The matrices formed by fm=,z

and fY -- rn, l = 1,2,3, 4, respectively, are given in [2].
4 _rjtlv 7

Because je_ and rum, m = 1,2,3,4, are homogeneous
functions of degree I [19] in ul, u2, us, and u4, we have

4 4

f_ "- E fr_,t ul, and _ - _ fYm,Zul. (4.14)
l=1 J'----1

For any (z,y,t) E SE(j,k,n), um(z,y,O,

f_(z,p,t), fam(z,y,t ), and hm(z,y,t), respectively,
are approximated by U_n(z, y, t ;j, k, n),

f_*(z, y,t ;j, k,n), /Ym*(z, y,t ;j,/c, n), and

h*(z,y,t;j,k,n). They will be defined shortly. For
m - 1, 2, 3, 4, let

U_n(Z, Z/, t ; j, k, n) def- -n

o .+ (u_)_,_(_- _j._)+ (_,)j_._Ct-_")
(4.15)

where (um)_n_, (um=)jn,_, (um_)i"_, and (um_)_,_ are
constants in SE(j, k, n). Obviously, they can be con-
sidered as the numerical analogues of the values of urn,

Oum/Oz, Oum/Oy, and Oum/Ot at (z$, yt, tn), respec-
tively.

Let (f,')_,_, (S_)_,_,(_=_,,)_.,,and (S_,,)_,_d_
note the values of fm_ , Pro, f_,t, and fire,t, respectively,
when Urn, m - 1,2,3,4, respectively, assume the val-

ues of (Um)_,_, m - 1,2,3,4. Let

4

,_]_,, = _(f_,t);,k(u_=);,, (4.16)
t=l

4
= n def _ n n

(f_,)j,_ _-- E(/_,,t)._,_(uz_)_,_ (4.17)

4
def :e n n

(f,_,,)j_ = E(/_)._,_(uz,)j,_ (4.18)

4

n def n U n(/win=);,, = E(f_m,z)j,,( .)_,_ (4.19)

4

(_,);._ d.,_(_._1_._(_,)_,_ (4.20)
t=l
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and

Because(i)

4
¢y _n clef y n n
'm,Ji,k- _(f_,,)_,,(u_)_,_ (4.21)

l=l

4

_'z' m - I, 2, 3, 4 (4.22)
l=l

and (ii) the expression on the right side of Eq. (4.16)
is the numerical analogue of that on the right side

of Eq. (4.22) at (zj,y_,tn), (f_z)_,k can he consid-
ered as the numerical analogue of the value of af_/az

at (.i,y,,tn). s_arly, (I_,,)_,_,(_,)_,k, (P_.)_,k,
(f_.,)_, and (f_,)_ can be considered as the nu-

merical analogues of the values of Of_/ay, afire�St,
8f_/Oz, OJw_/Sy, and 8f_/St at(zj,y_,tn), respec-
tively. As a result, we assume that, for m-- 1,2,3,4,

d__effdr_ _n • n
f_'(z,y,t ;j, k,n) -- tJmlj,_ -I"(f_g)j,_(z - xj,_)

+ _ muIj,kt -- Yj,k) "i"(f_t)j,k(t -- t n)
(4.23)

and

_.(z,u,_ ;j,_,_) _-_- (_)_,} + (_)7,_(_ - _,_)
n n

+ (_)_,_(_ - _,_) + (_,)_,_(_- _ )
(4.24)

Also, as an analogue to Eq. (4.12), we assume that

_(_,u,_ ;j,_,.) d=_(f_'(_, U,_;J, _,"),

_'(_, U,_;j, },"), u_(', U,_;j, },"))
(4.25)

Note that, by their definitions: (i) f_, jw, fm_j, and

f_,_, m,f = I, 2, 3, 4, are functions of (_)j_,_, m =
1,2,3,4; (a) (I_.)_",_and (_'.)_",_,_ = 1,2,3,4, are
functionsof (_)_ and(._)_,_, _ = 1,2,3,4; (in)
(_,)_,_ and (_'_,I_,_,_ = 1,2,3,4, are_nctions or
(um)_,} and (_,)_,}, m = 1,2, 3,4; and (iv)(_,)_,_

and (f_,)_,_ are functions of (_)_,_ and (_,)_,}, m -
1,2,3,4.

Moreover, we assume that, for any (z,y,t)

SE(j,k,n), and m = 1,2,3,4,

au_,(_,u,_;j,_,n) + al_,'(_,u,_ ;1,_,-)

+ Of_m*(z'Y'_;J'k'n) = 0
Dy

(4.26)

Note that Eq. (4.26) is the numerical analogue of
Eq. (4.10). With the aid of Eqs. (4.15), (4.16), (4.20),

(4.23), and (4.24), Eq. (4.26) implies that, for m =
1,2,3,4,

n(._,)_",_= -(f_.)_,_ - (_)_",_
4 n (4.27)

I,ffil

Thus (um,)_,_ are functions of (Um)_,_, (um,)_,_, and
{Urn .)_'- From this result and the facts stated fol-
X ¥ J_g"

lowing Eq. (4.25), one concludes that the only mde-
penden_ d/scret_ variables needed to be solved in the

current marc_n_ scheme are (Um)7,k , (um.)_,k, and

(,,rn,)_.,,.
Consider the conservation elements depicted in

Figs. 7(a) and 8(a). The Euler counterparts to
Eqs. (2.12) and (2.13), respectively, are (i)

sCC_(,)O,_,n+xl2)) h*- d_'= 0 (4.28)

where (j, _, _ + 1/2) _ _I; and (iI)

s _ .dg= 0 (4.29)

where (j,k,n + 1) _ t_. Note that £ = 1,2,3, and
m = 1, 2, 3, 4 in Eqs. (4.28) and (4.29).

Next we shall introduce the Euler counterparts

of Eqs. (2.24), (2.25), (2.30), and (2.31). For any

(j,k,n) e _, let

(f_,,)_,_ defT_ _ (ffm,l)j,k (4.30)

_ n n\ ( rn,_);,}/ _,(Prn,,)s,}/

and

( _)_,. d_T, ("rn_)_,_= (4.31)

k (_rn_)_',,/ _ (_,)7,_ /

where m,f = 1,2,3,4. The normal_ed counterparts
of those parameters defined in Eqs. (4.30) and (4.31)
are

and

+ n def_((urn_)_,k= ,,rn¢)_,k

+ . d_(

+ . = _--_(_;_,_,_(i<g_)_,_d_ 3_ ._ ..

+ n det 3At n
(_,_);,_ = 2-_(_rn,_)_,_

(4.32a)

(4.32b)

(4.33a)

(4.33b)
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In the following development, for simplicity, we
may strip from every variable in an equation its in-
dices ], k, and n if all variables are associated with
the same mesh point (j,k,n) EfL Let F ¢+ and F "+,

respectively, denote the 4 x 4 matrices formed by _+l

and flm,+t,re, t= 1,2,3,4. Let I be the 4 x 4 identity
matrix. Then the current counterparts to Eqs. (2.33)-
(2.50) are

s p* I- FC+-

and

(4.34)

Z(1)± d=e4-(1 -- F ¢+ -- F_+)(I + F c+) (4.35)12

Z(_)_ d=d4-(1-- F ¢+ - Fn+)(I + F _+) (4.36)

_(21)4- de f I "1- F ( + (4.37)

_)_ d__ef:F(I + F¢+)(21 - F¢+) (4.38)

_3(_)i der :t:(I + F¢+)(I + F n+) (4.39)

y_(31)-I" de=f 1" "{-F _+ (4.40)

_(_)_- d_d-I-(I + F_+)(I + F¢+) (4.41)

E(_)± d=d:F(I + F"+)(2I - F _+) (4.42)

_)* _z I + F ¢+ + F _+ (4.43)

+ F¢++ F,+)CZ- (4.44)

S(2)_ d=d:F(I + F (+ + F_+)(I - F "+) (4.45)13

E(2)_- d=efI -- F ¢+ (4.46)21

E(2)_ d__ef4-(I -- FC+)(2/+ F ¢+) (4.47)22

_(2)4- def :_:(I28 = - F¢+)(I - F_+) (4.48)

_(32)4- def__i - F _+ (4.49)

F"+)(I - F¢+) (4.50)

3C_)* _f -I-(I - r"+)(2I + F n+) (4.51)

that Eqs. (2.33)-(2.50) become Eqs. (4.34)-Note

(4.51), Eqs. (4.34)-(4.51), respectively, under the fol-
lowing rules of substitution:

Rule 1: 1, vC, and v,, be replaced by I, F¢+, and F "+,
respectively.

_(1)a and _.(2)aRule 2: ,_(1)_ and _(2)_ be replaced by -ml "mz ,VmZ "n_

m,£ = 1, 2, 3, respectively.

As will be shown, under the above and other roles of
substitution, many other equations given in Secs. 2

and 3 can be converted to their counterparts in this
section. The latter will be referred to as the Euler

images of the former.

Equations (4.28) and (4.29) _e evaluatedinAp-
pendixB of [2]. Let u,u_',and u_',respectively, be

the 4 x 1 column matrices formed by urn, a+¢, and

U+,, m = 1,2,3,4. Then the results can be expressed
as: (i)

[_:_)+_ _0)+.-.+ - _(_)+.-.+]"+Xl_+

[_0)- _.= _0)- _+ + _(_)- _+1" (4.52)

where (], k, n + 1/2) _ f_x and f = 1, 2, 3, and (ii)

[_,(2)+ .- _1__-(_)+.-:+
_Z_ --T"L_ "¢ +_'Z_)+U+J_A_

(21"+

= [S(_)__ + _(:_)- T+ . y:(2)-_+1 "+'l:e (4.53)

where (j,i_,n + 1) _ G2 and £ = 1,2,3. Note that the
six equations given in Eqs. (4.52) and (4.53) are the
Euler images of Eqs. (2.53)-(2.58), respectively, under
the substitution defined by Rule 2 given above and

Rule 3: u, u_, e_, and %+be replaced by _, ¢,, _, and

_+, respectively.

Note that an Euler image is a matrix equation.

Bemuse (i) matrix multiplication is noncommutative,
and (ii) the coefficient matrices of an Euler image are
mesh-point dependent, an Euler image is more difficult
to deal with than its counterpart in the 2D a or a-e
scheme.

Because the Euler images of Eqs. (3.5) and (3.6)

are also true [2], by summing over the three equa-
tions given in Eq. (4.52), one concludes that, for any

(j,/c, n -i- 1/2)e nx,

I_ [V_(1)_ _..i."V_(1)_ _ + _.(1)__+1 n (4.54)-I.

" J (j,k;1,_)

fl'_+x/:_can be evaluated in terms of theAs result,a

marching variables at the nth time level. Similarly, by

using Eq. (4.53), one concludes that, for any (j, k, n +

1) _ f_2,

_.+__,/_ --

1 _ [_(_)-_. _(2)-T + . _(=)-=+]"+;D (4.55)
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As a result, _,_.+1 can be evaluated in terms of the
marching variables at the (n + I/2)th time level.

For any (j,k,n Jr 1/2) E t2z, the matrices

(_(1)+_-+112m,l = 1,2,3, are functions of--_,_'U2."ml Jj,k , a

Thus they are also functions of the marching variables

at the nth time level. Assuming the existence of the in-
[_(1)+_n+z/2

verse °f each °f the matriceS t-ml Jj,k ,m- 1,2,3,
one can define

-+U2 -I
_}1)d,, [f:gO)+'_ 1

= L_ _ }i,k J
I .-* Irl,x =("-'12 q: _ _ " Jcy,k;1,0

(4.56)

where t = 1, 2, 3, and the inverse of a matrix A is de-

noted by [A]-*. As a result of their definitions, S(*),

l = 1,2,3, can be evaluated using the marching vari-
ables at the nth time level.

1_(2)+_.+1
For any (j,k,n+l) E f_2, the matrices _.,,_ pj,_ ,

m, t -- 1, 2, 3, are functions of _1. Thus they are also
functions of the marching variables at the (n-I- 1/2)th

time level. Assuming the existence of the inverse of
{_(2)+_n+1

each of the matrices _"ml }j,k , m = 1,2,3, one can
define

._L(2)d.f [/:_:(=)+_"+Il-*
-" L_'" Yi,,_J

[_o)- =- _(2)-,7++ r.c')-,z+l.÷112
x ['-'a -T-z_ ( "_ _J(j,k;2,0

(4.57)

As a result of their definitions, _(2), l = 1,2,3, can

be evaluated using the marching variables at the (n +

1/2)th time level.

With the aid of Eqs. (4.34)-(4.51), (4.56), and

(4.57), Eqs. (4.52) and (4.53) imply that [2]

. +..,+1 n+1/2

[,7+(I+FC+),V+(x+r'),,.J,,,
(4.58)

•.,+l n+zl2
[,T-(2/-F¢+)_+(I+F"+)% jj,, =g}1),

(4.59)

..+l-+Z/2
+(I+ - j,,, =

(4.60)

[,_- (_- F_+) 'V - (_- _+) '_+1"+'=
n JYA

(4.61)

+ + - "+'=
J j,k

(4.62)

(4.63)
where (j, k, n -l- 1/2) E _'_1is assumed in Eqs. (4.58)-

(4.60), while (j,/_, n+ 1) _ _2 is assumed in Eqs. (4.61)
{A a9% l:l,_c_tlse 8 (1) o(1) .(1) .(2) 0(2) and s (2) de-

--_-*.u_,}. u,. 1 ,°2 ,°3 ,°1 ,°2 , 3

note the expressions on the right sides of Eqs. (2.59)-

(2.64), respectively, Eqs. (4.58)-(4.63) are the Euler

images of the latter if one adds the following rule of
substitution:

Rule 4: _) be replaced by _(_), k = 1,2, and l = 1,2,3.

It follows from Eqs. (4.58)-(4.63) that (i)

c )._,_ = (4.04)

and

(..+_,,+I/2 1 (_1(1)_ _(,))

where (j,k,n+ 1/2) _ _"_1;and (ii)

(4.65)

"+' 1 (_(2) _(:))) (4.66)
c y_,_ =

and

-÷,.÷,u. }._,_ = _

where (j, k, n + 1) _ f_2. EQS. (4.64)-(4.67) are the

Euler images of Eqs. (2.67), (2.68), (2.?0), and (2.71),
respectively. Note that the Euler images of Eqs. (2.66)

and (2.69) are also true [2]. These images are equiva-

lent to Eqs. (4.54) and (4.55). Because the latter are
easier to use, they will be used exclusively in the fol-

lowing development.

With the above preparations, an Elder solver can
now be defined. It consists of two marching steps. The

first step is formed by Eqs. (4.54), (4.64), and (4.65);

while the second is formed by Eqs. (4.55), (4.66), and

(4.67). As explained earlier, S(_), k = 1,2, and

£ = I, 2, 3, become known after _,+,12 and _,_1 are
evaluated using Eqs. (4.54) and (4.55), respectively.

This Euler solver has a two-way marching nature sim-
ilar to that of the a scheme. As a result, it must be

neutrally stable, (i.e., no numerical diffusion) if it is
stable. Because it is reversible in time, this solver can-

not model a physical problem that is irreversible in

time, e.g., an inviscid flow proble m involving shocks.
Hereafter, this new Euler solver will be referred to as

the 2D Euler a scheme.

At this juncture, note that the 2D Euler a scheme

is greatly simplified by the fact that _,;U2 and ":_+x, . "j,k ,
respectively, can be directly evaluated in terms of the
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marching variables at the nth and (n -I- 1/2)th time
levels (see Eqs. (4.54) and (4.55)). As a result, the

t_(*)+_-+*/_ t_,(_)+_-+* which are non-matrices _'_mL py,k and _'_mZ pj,_ ,

//near functions of _+1/_ and _,t +1, respectively, can
be evaluated easily. In other words, nonlinearity of
the above matrix functions does not cause a particu-
lar problem for the Euler a scheme.

To explain how Eqs. (4.54) and (4.55) arise, note
that the conservation condtions (i)

_s(cB(')O,k,-+ID)) _" dg= 0 (4.68)

for any (j,/c, n + 1/2) E f_,, and (ii)

_s h_ . dg = 0 (4.69)
(cB(2)(j,_,n+D)

for any O,k,n + 1) E f_, are the direct results of
Eqs. (4.28) and (4.29), the basic assumptions of the
Euler a scheme. According to Eq. (3.1), CE(1)(j, k, n+

1/2) is the cylinder A'B'C'ITE'F'ABCDEF depicted
in Fig. ?(a). Except for the top face A'B'CqTE_F _,
the other boundaries of this cylinder are the sub-
sets of three solution elements at the nth time level.

Thus, for any m = 1,2,3,4, the flux of h_ leaving
CEO)(j, k, n + 1/2) through all the boundaries except
the top face can be evaluated in terms of the marching
variables at the nth time level. On the other hand,

because the top face is a subset of SE(j,k,n + 1/2),
the flux leaving there is a function of the marching
variables associated with SE(j,/:, n + 1/2). Further-
more, because the outward normal to the top face has

no spatial component, Eq. (4.25) implies that the to-

tal flux of h* leaving CEO)(j, I:,n + 1/2) through the
top face is the surface integration of u_ over the top
face. Because the center of SE(j,k, n + 1/2) coincides
with the center of the top face, it is easy to see that the
first-order terms in Eqs. (4.15) do not contribute to the
tots/flux leaving the top face. It follows that the to-

tal flux leaving the top face is a function of (um)_,t+1/2

only. As a result of the above considerations, _.t +1/2

can be determined in terms of the marching variables

at the nth time level by using Eq. (4.68) only. Simi-

larly, fi_j,t+1 can be determined in terms of the march-
ing variables at the (n + 1/2)th time level by using

Eq. (4.69) only. Eels. (4.54) and (4.55) are the direct
results of Eels. (4.68) and (4.69), respectively.

In an extension currently under development, the
mesh used is not uniform in space. As a result, point
G' depicted in Fig. 7(a) generally is not the center
of the top face referred to earlier. To simplify the

development, we have moved the center of SE(j,k, n+
1/2) to the center of the top face, i.e., away from point
G'.

Next we shall construct the 2D Euler a-e scheme,

i.e., the Euler version of the 29 a-e scheme. For this
scheme, we shall use the CEs defined in Eqs. (3.1) and
(3.2), i.e., Eqs. (4.68) and (4.69) will be assumed. Thus
Eqs. (4.54) and (4.55) will also be part of the Euler a-e
scheme. In the following, we shall describe the rest of
the 2D Euler a-e scheme.

As a preliminary, note that _(t) can be evalu-

ated by a direct application of Eqs. (4.56) and (4.57),
if one does not mind inverting the 4 × 4 matrices

(_0)+_ "+1/2 and /_'(2)+_"+z Alternatively, one
•-'n /y,t ' _,'-'n /.f,_"

may use the method of Ganssian elimination to ob-

tain _(t) as the solution to

(x)+_ "+1/2 _0)

-n /j,_ L (4.70)

%-_(1)--;;.+ ,-,(1)---.+1 n

and

(E(2)+_n+l _(2)
z, /j,k

(4.71)

- + '
-- F*,a_ I_" T '/"J,_ " J (,7,][';2,_)

To simplify computation further, in the following de-
velopment of the Enler a-e scheme, we shall assume
that (i)

(_(1)+_"+*12 . (4.n)
,1 yy,_ =\ zl /0,_;1,0

where £ = 1,2,3 and (j,/_,n + 1/2) E fh, and (ii)

,%,+1 (,n(2)+'_-+*1"
L1 /._,, =k Zl /0,,;__,z)

(4.73)

where _ = 1, 2, 3 and (j, k, n + 1) _ f_2.

To proceed, let (i)

n

(4.74)

#) (2z-r:+) - (z+F"+).'.+1"- " J(j,_;1,2)

and

(4.76)
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where(j, k,n + 1/21 E fh; and (iiI

..+]n+ID
_2) d_ [iT.-I.-(I-- .F';+) '_" + (./'-- .F_+) % Jo,k;=J)

(4.77)
n+ll_

(4.78)
and

.,+9 n+U_
d_. + (I- FC+) - (2I+r*) %J

(479)
where (j,k,n-F 1) E _. Then, with the aid of
F.qs.(4.34)-(4.51),(4.T2),and (4.73),Eqs.(4.56)and
(4.57) imply that

#if) = _k), k = 1,2; t = 1,2,3 (4.80)

As a result, assuming Eqs. (4.72) and (4.73/, Rule 4
given above should be replaced by

Rule5: 8_k)he replacedby _), k = 1,2, and _= 1,2,3.
It follows that Eqs. (4.74)-(4.79) are the Euler images

of the fact that s__), k = 1,2, and t = 1,2,3, represent
the expressions on the right sides of Eqs. (2.59),(2.64 I.

Combining Eqs. (4.64), (4.65) and (4.80), for any
(j, k, n-!- 1/2) E _'_1, one has

iT+_,'+t/= (,Z,+_,,+1/2
C/j,_ =\ ( Jj,_

and

where

.,+_,n4-1/2 {.,o+_,n+1/2

% ]j,_ = l u,! ]j,_

0+_,+1/2 def 1

and

(-..+xn+ll2d__l (S_11)b_31))% }j,k - "_

(4.Sla)

(4.82a)

and

where

(..+_n+t (_.+_n+l
% )j,k = _ n ]j.k (4.83b)

,+V _+_ def1, = (4.84a)

and

(..o+,,-+1 de_ 1 (_)__2)) (4.84b)

Note that: (i) As a result of Eqs. (4.77),(4.79) and

(4.84a,b), (_ *+V_+I and (*_*+!"+_ be evaluated
\ ¢ J_,_ x _ ,_,_ can

intermsofthe marchingvariablesat the(n + I/2)th

timelevel;and (ii)Eq. (4.84a,b)arethe Eulerimages

ofEqs.(3.27a,b).

Furthermore, for any (j,k,n) e f_, let (¢,)_,t
denote the column matrix formed by (Um=)_,t, m =
1,2, 3,4. Then Eqs. (4.27), (4.30), and (4.31) imply
that

u_ =--4-i4 (F¢+g_. + Fn+._+ ) . (4.85)

With the above preliminaries, the Euler a-e
scheme and the Euler weighted-average a-_ scheme can
be developed in a fashion parallel to the development
of their non-Euler counterparts described in Sec. 3 [2].
Excluding a few exceptions to be discussed shortly, all
other equations related to the Euler schemes are the

trivial Euler images of its non-Euler counterparts un-
der the substitution rules given in Rules 1-3, 5, and

(4.81b) Rule 6: Any scalar variables be replaced by its column-
matrix counterpart.

In other words, one can obtain the Euler image from
its non-Euler counterpart by adding an arrow over the
symbols representing scalar variables. The complete
set of equations that define the Euler a-e scheme and
the Euler weighted-average a-e scheme is given in [2].

In the following, we shall only discuss those equations
(4.82b) which cannot be obtained using the above substitution

rules. One half of these special equations is formed by

the Euler counterparts to Eqs. (3.62), (3.66a,b), and
(3.67a,b). The other half is identical to the first half
except that it is associated with (j,k, n+l I E f/2. As a
result, we shall further restrict the discussion to those
in the first half.

Let the ruth components of the 4 x 1 column
,-.(t)+,n+_D ,..(t)+,_+_D ,..(t),,=+_l_

matrices _u( }j,_ , tu,_ )_,_ , _u= )j,_ , and
(-.(t),n+ll_I_ {o(t)+_n+lD {. (t)+,tn+112
uW )$,t ,oedenotedby_=m¢ q,t ,_ms /{,t ,

(t) .+112 (t) n+l/2 •
(Um=)j,k , and (u_)_,t , respectlvely (these ma-

(4.83a) trices-c._n be defined by using the Euler images of

Note that: (iI As a result of Eqs. (4.74/,(4.761, and

/ "*o+_ n+1/2(4.82a,b), (_ °+_n+l/:e and _u, )j,t can be evalu-_, ¢ J/,t
ated in terms of the marching variables at the nth time
level; and (ii) Eqs. (4.82a,b) are the Euler images of
Eqs.(3.15a,bI.

Similarly,Eqs.(4.661,(4.671,and (4.801imply

that,forany (j,k,n + 11E t_,

+_"+_ (¢o+'_"+_

23



Eqs. (3.42)-(3.47),and (3.52)-(3.57)).Then, for

m = 1,2,3,4, and l = 1,2,3, the Euler versions of
Eqs. (3.62), (3.66a,b), and (3.67a,b) are (i)

(ii)

clef _( % (O _2 (4.86)= 2+ ,

= 0, if ernl=0rn2=0 3 = 0, (4.87a)

and

w+
Urn ( -"

+ (o  ornl)a o,,.,)',
(0ml0m2) a -{- (0m2_rn3) a -{- (_rnB_rnl) a

otherwise; and (iii)

(4.87b)

w+
u_. = 0, if0_I= 0rn2= 0rn3= 0, (4.88a)

and

w+
Urnrl --

(1)+ a (3)+ a u(3)+(orn2orn3)°'urn, +(o.,sernl) +(orn ern2) rn.
(ernls 2) + (ern 0rns) + (ernsern ) 

(4.88b)
otherwise. Here (i) a __ 0; (ii) the Euler counterpart

to u_ + is the column matrix formed by w+Urn(, _ "-

1,2,3,4; and (iii) the Euler counterpart to u_ + is the
column matrix formed by u_ +, m = 1,2,3, 4.

This section is concluded with the following com-
merits:

(a) Because of the assumptions made in Eqs. (4.72)
and (4.73), the Euler a scheme is not the special
case of the Elder a-e scheme with e = 0.

(b) Because (i) a fractional power is costly to evalu-
ate, and (ii) evaluation of (OmZ)a does not involve
a fractional power if a is an even integer, the Eu-

let weighted-average a-e scheme is more computa-
tionally efficient if a is an even integer.

5. Numerical Results

In [11], several numerical solutions of Eq. (2.1)
generated using the a-e schemes are compared with the
exact solutions or the numerical solutions generated
using traditional methods. These comparisons show
that the a-e scheme, which includes the a scheme as
a special case with e = 0, is an accurate solver for
Eq. (2.1).

The a-e scheme was also generalized in [11] to
solve the 2D inviscid Burgers' equation. In spite of

its simplicity, particularly the fact that it does not use

(i) any mesh refinement technique, or (ii) any mov-
ing meshes, this new solver is capable of generating
highly accurate unsteady shock solutions. The shock
discontinuities are resolved almost to within one mesh

interval.

In this section, accuracy of the Euler weighted-
average a-_ scheme defined in Sec. 4 will be evaluated

using a steady-state shock reflection problem [14]. The
computation domain and the shock locations (A-E and

E--_ are depicted in Fig. 14. The lower boundary is a
solid wall. Assuming 7 = 1.4, the exact Elder solution

to this problem is:

(a) In the region ABE,

u=2.9, v=0.,

(b) In the region AEFD,

u = 2.6193,

p = 1.7000,

(c) In the region ECF,

u = 2.4015, v = 0.,

p = 1.0, p = 1.0/1.4.
(5.1)

v = -0.50632, (5.2)
p = 1.5282.

p = 2.6872, p = 2.9340.
(5.3)

Note that the Mach number is equal to (i) 2.9 in the
region ABE; (ii) 2.3781 in the region AEFD; and Cfii)
1.9424 in the region ECF.

The mesh used in the current numerical calcula-

tions is depicted in Fig. 15. Again a mesh point E G1
is marked by a solid circle; while a mesh point E ft2
is marked by an open circle. The mesh is a special
case of that depicted in Figs. 3-6 with b - 0. Note

that (i) only the mesh points G f/2 are present at the
inflow boundary, and (ii) the mesh parameter w is so
chosen that only the mesh points E f_2 are present
at the outflow boundary. Moreover, for simplicity, a

mesh point and the corresponding marching variable
will be identified by the time-level number n, and two
new mesh indices r and s which are given in Fig. 15 as

a pair of integers enclosed in parentheses. Note that,
for the mesh points G ill, r = 1,2,3,...,R,R + 1,
and s = 1,2,3,...,S. On the other hand, for the
mesh points E f12, r = 1,2,3,...,R,R + 1, and
s = 1, 2, 3,..., S, S %1. Obviously two different mesh
points at _he same time level always have different
pairs of r and s.

In thecurrentnumericalcalculation,atthe time

leveln = 0,urn,m = 1,2,3,4,at allmesh pointsare

calculatedusingEq. (5.1).Alsowe assumethat

u+( =u+_ =0, m= 1,2,3,4. (5.4)
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Theaboveinitial conditions are also assumed at the

inflow boundary for all n = 1,2,3, .... At the upper
boundmT, for all n = 1/2,1,3/2,2,..., Eq. (5.4) is also
assumed. Moreover, Urn, m - I, 2, 3, 4, are calculated

using Eq. (5.2). and

To impose the proper boundary conditions at the
lower boundary, note that the solid wall boundary con-
ditious at B'-'C(see Fig. 14) are equivalent to the condi-
tion that the flow field below _ is the mirror image

of that above. By using Eq. (4.1) and the fact that
y = 0 at any point on B-'C, it can be shown that the
last condition implies that

urn(z,-y) = um(z,y), m = 1,2,4 (5.5a)

.,(=,-y) = -u_(=,y) (5.5b)

= m -- 1,2,4 (5.6a)
az az '

0us(z,-y) 0us(=,y)
= (5.6b)

Oz Bx

a_,,.(=,-v) a_,,(=,v)
= Oy , m = 1,2,4 (5.7a) anday

and
a,,3(=,-_) a,,s(=,_)= (5.Tb)

or ay

Consider the mesh depicted in Fig. 15. Then it be-
comes clear that the numerical analogues of Eqs. (5.5a)

-(5.7b) are

n n

(Um)R+x,. "- (urn)R,. , m'- 1,2,4 (5.8a)

n ,t

= (5.8b)
N n

(um=)R+l,. = (Umf)R,. , m= 1,2,4 (5.9a)

n 7'$

(uaf)R+l,, = --(ua_)/_,, (5.9b)

n n

(Umy)R.I.I,=-"--(t/.my)R,,_, 'm.--" 1,2,4 (5.10a)

and
n n

= (5.10b)
respectively. According to Fig. 15, the range of s in

Eqs. (5.Sa)-(5.10b) is dependent on the time level n.

Let (i) S + d__.efS + 1, and S- _f S if S is even; and

(ii) S + d___efS, and S- _ S - 1 if S is odd. Then (i)
s - 2,4,6,...,S- if n -- 1/2,3/2,..., and (ii) s -
1,3,5,...,S + if n - 1,2, .... Furthermore, because
b = 0, it can be shown that Eqs. (5.9a, b) and (5.10a,b)

are eqivalent to

(+in + nUm¢ .R+X,.= (Um_)R,"' m= 1,2,4 (5.11a)

+ r, (use)R,. (5.11b)

(um')R*1, ' = ¢ R,,' m= 1,2,4 (5.12a)

•4- n /' _.F n=_
respectively. Equations (5.Sa,b), (5.11a,b), and

(5.12a,h) are the boundary conditious at the lower wail
(a solid wall) in the current numerical calculations. In
other words, the marching variables associated with

the mesh points below the solid wall will be deter-
mined using these equations.

Next we discuss the outflow boundary conditions.

For any n = 1,2,3,..., and r = 1,2,3,...,R, we as-
sume that

n / _n-112

(Um),,s+ 1 = LumSr,s , m= 1,2,3,4 (5.13)

(lg=.)r_S.kl --" 0 , I/l= 1,2,3,4 (5.14)

n ,, ,,n-1/2
(Urn,)r,S+ 1 "- _urny)r,s , m -- 1, 2, 3, 4 (5.15)

When the time-marching solution reaches its steady-
state limit, the above conditions can be considered as
a result of the requirement that the partial derivatives
of the flow variables with respect to z are zero at the
outflow boundary. Because b - 0, it can be shown

that Eqs. (5.14) and (5.15) are equivalent to

+ '_ 1 (u+m¢ . _,.-x12(u'c),,s+, - (5.1_)

and

+ ,_ 1 + ,_--U2
= (u*,, (5.17)

where m = 1,2,3,4, n = 1,2,3,..., and r =

1,2,3,...,R. Equations (5.13), (5.16), and (5.17) are
the outflow boundary conditions in the current numer-
ical calculations. As a result, the marching variables at
the outflow boundary will be determined using these

equations.

With the aid of the above initial and boundary

conditions, the marching variables at all time levels
can be determined using the Euler weighted-averaged
a-¢ scheme. As an example, at any n - 1/2,3/2,...,
the marching variables associated with the mesh point

(2,1) (marked by a solid circle in Fig. 15) can be de-
termined in terms of those associated with the mesh
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points (1,1), (2,1), and (2, 2) st the (n- 1/2)th time
level (marked by open circles). As another example,

at any n -- 1,2,3,..., the marching variables associ-

ated with the mesh point (1,3) (marked by an open

circle) can be determined in terms of those associated

with the mesh points (1,2), (2,3), and (1, 3) at the
(n - 1/2)th time level (marked by solid circles).

According to Fig. 14, the distance between the

inflow and the outflow boundaries is 4., while the dis-

tance between the upper and the lower boundaries is

1.. On the other hand, according to Fig. 15, the above

two distances are to. S and 2h- R, respectively. Thus

4 1

w = _, and h = 2"R (5.18)

In addition to the initial conditions, the boundary
conditions, and the integers R and S, the other input

parameters for the current numerical calculations are

_, _, At, and a positive integer nt. Here we assume

that the time marching ends at the ntth time level,

i.e., at t--T_nt .At.

It is shown in [2] that, for any Euler solver con-
structed in Sec. 4, a local CFL number ee associated

with any mesh point (j, k, n) E G can be defined in
tern_ of u, v, c, w, h, and at. Here u, v, and c are the

z-velocity, the y-velocity, and the sonic speed at the

mesh point, respectively. Two global CFL numbers
are considered in the current calculations. The first,

denoted by v=m,, is the maximum of ve with respect

to the steady-state solution given in Eqs. (5.1)-(5.3).
The second, denoted by ee,n, is the largest value of ee

ever reached at any mesh point (j,/c, n) E f_, where

n - 0, 1/2, 2, 3/2, 2,..., nt. Excluding the initial and

the boundary conditions, veto, is dependent on R, S,

and at only. On the other hand, veto is a function of

R, S, at, nt, e, and _. According to a series of nu-

merical experiments, the value of c_ plays only a minor

role on the stability of the Euler weighted-average a-_
scheme. Generally the scheme is stable if

0 < _ < 1 and veto _< 1. (5.19)

To measure the convergence of a time-marching

solution to the corresponding steady-state solution
(note: this steady-state solution generally differs from

the exact solution given in Eqs. (5.1)-(5.3)), for any
n---- 1,2,3,...,nt, and m- 1,2,3,4, let

Era(n) d_

-log.,0
1'=2 ,'=,'(,,)

(5.20)

Here, for any m = 1, 2, 3, 4, C_n is the maximal value

of lum l within the exact steady-state solution defined

by Eqs. (5.1)-(5.3). It can be shown that cz = 2.6872,

c_ = 6.4534, cs = 0.86073, and c4 = 15.084. Moreover,

de_ f 1, if 8 is odd;
r($) (5.21)

-- _ 2, otherwise.

According to Fig. 15, the summation that takes place

in Eq. (5.20) involves all the mesh points at the nth

time level excluding those located (i) at the inflow

boundary, (ii) at the upper boundary, and (iii) below

the lower boundary. Because n - 1,_2,3,...,n=, the
mesh points involved in the summation are all marked

by open circles in Fig. 15. The values of um at the
inflow and the upper boundaries do not change with

time, while those at the mesh points in (iii) are depen-

dent on the values of um at other interior mesh points.
Note that the values of Um at the outflow boundary

change with time and are dependent on those at a
lower time level. Because the summation involves a

total of R × S mesh points, the result of this summa-

tion divided by R× S is the average value of the change

of um at the same spatial mesh point (measured by the

absolute value of this change) from the (n - 1)th time

level to the nth time level per mesh point. This av-

erage value is further normalized using the constant

c_. If we further assume that the time-marching solu-

tion converges to a steady-state solution that is similar

to the exact steady-state solution (such that the nor-

malization by c_ makes sense), then Era(n) can be

interpreted as the average number of correct signifi-

cant figures in um at the nth time level as compared

with the converged value of urn (which, of course, is

not identical to that given in Eqs. (5.1)-(5.3)).

Because the time marching solution can not reach
a steady-state solution before the boundary conditions

are fully felt at all interior points, rapid convergence

generally can not occur before the time has elapsed

that allows a fluid particle to travel the full length

of the computation domain. It can be shown that,

for the solution given in Eqs. (5.1)-(5.3), the average

value of u over the computational domain is 2.6261.

Thus an average fluid particle requires 4.0/2.6261 =
1.5232 time units to travel from the inflow boundary

to the outflow boundary. The number of time steps

corresponding to the above number of time uints is

def 1.5232
n= = -- (5.22)

at

i.e., rapid convergence can not occur before n > no.

With the above preliminaries, the numerical re-

suits generated using the Euler weighted-average a-e
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scheme can now be presented. Six test problems, with
different combinations of ¢, a, R, S, At, and n,, are
defined in Table 1. For each problem, the values of T,
Veins, Veto, and ne _ 8]80 given in the same table. In
Figs. 16-21, the numerical _ults (triangular symbols)
of the pressure coefficient ¢_ at n -- n, for Problems
#1--#6 are compared with the exact solution (solid
lines). Here

= - 1 (5.23)

with Moo = 2.9 and Poe = 1.0/1.4 being the in-
flow Mach number and pressure, respectively. Note
that: (i) at the mid-section of the computation do-
main (# = 0.5 in Fig. 14), two neighboring mesh points
at the same time level are separated by a distance

= 2w, and (ii) the mesh points at the nzth time level
are marked by open circles in Fig. 15 bemuse n, is a

whole number. In Figs. 16-21, the values of Era(n),
m = 1,2, 3, 4, are also plotted against n for all six

test problems. In Fig. 22, twenty-six pressure con-
tour levels between the values of 0.6 and 3.1 with uni-

form increment 0.1 were used for the contour plots of

Problem #3. Finally, for Problem #3, a 3D pressure_
distribution plot is shown in Fig. 1. Note that, for
easier visualization, only pressure values at the mesh
points with s = 2, 4, 6,... are used in the last plot.

The significance of the results shown in Figs. 1
and 16-22 is discussed in the following remarks:

(a) From Table I and the results shown in Figs. 16-18,
it appears that the convergence to steady-state is
much faster with a smaller value of veto (or veto,).
As a matter of fact, convergence to steady-state
can reach s plateau representing some number of
correct significant figures if veto is too close to 1.
From Table 1 and a comparison among Figs. 16,
19, and 20, one also concludes that slower con-

vergence generally occurs with a value of e much
smaller than 0.5. A comparison between Figs. 16
and 21 reveals that a change of the value of
from 2 to 1 also causes a slight decrease in con-

vergence rate. Because numerical diffusion gen-
eraily increases with (i) a smaller value of veto,

a largerHue of and a larger, ue
of a, one may conclude that faster convergence

generally occurs with larger numerical diffusion.
This trend is consistent with the fact that shocks

cannot be formed without physical or numerical
diffusion.

(b) The effectiveness of weighted-averaging as a tool
to surpress numerical cecillatious near discontinu-
ities is clearly demonstrated by the results shown

in Figs. I and 16-22. Moreover, the current
weighted-averaging does not cause the smearing
of shock discont'mnities and has no discernible ef-

fect on the smooth part of the solution. From
table I and a comparison between Fig. 16 and 21,
one also concludes that the increase of the value

of a from 1 to 2 has a marginal impact on the
numerical results.

(c) Comparing the numerical results shown in
Figs. 16-21 with the exact solution, one concludes
that the Euler weighted-average a-e scheme is ca-
pable of generating highly accurate solutions for
the steady-state shock reflection problem under
consideration. Also a comparison of the results

shown in Figs. 16, 17, and 19-21 reveals that ac-
curacy of the numerical results generally is not
sensitive to the change of the values of z'em, e,
and a. An exception is that numerical results

may become more diffusive and thus shock reso-
lution becomes less sharp if the value of e is too

large, e.g., • = 0.8 in Problem #5. Finally, a com-
parison of the results shown in Fig. 18 (Problem
#3) with the results of other test problems reveals
that accuracy increases sharply with a decrease of
the mesh size.

This section is concluded with a brief discussion

on recent applications of the current solver to com-
putational aeroacoustics (CAA) problems. CAA i_ an
area of current interest in CFD. It is of both theoretical

interests and practical importance. For a scheme to be
a useful research tool, it must be accurate enough to
resolve sound wave details. Furthermore, its boundary
conditions must be non-reflecting. There have been a

large number of papers published on these two topics.
In practice, CAA will help to reduce jet noise level
for air-borne vehicles, and hence becomes an impor-

tant topic in HSR (High Speed Research) and AST

(Advanced Subsonic Technology) programs.
The most popular numerical schemes for CAA are

the high order (4-6th) compact or non-compact dif-
ference schemes, marching forward by Runge-Kutta
method. These schemes work quite well when incorpo-
rated with delicatedly designed non-reflecting bound-
ary conditions. They are even capable of capturing
Mach waves and weak shocks.

When conducting numerical experiments of the
current solver for CAA problems, surprisingly we

found the following attractive features:
• Accuracy of the current solver is comparable to

that of a 6th-order compact difference scheme,

even though nominally the current solver is only
of 2nd-order accuracy. For example, the smallest
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eddy can be resolved in 3-4 grid celk.

• Generally, the non-reflecting (radiation) bound-
ary condition can be implemented in a simple way
without involving characteristic variables.

* Most importantly, the current solver is capable
of handling BOTH continuous and discontinuous
flows very well and thus provides a unique numer-
ical tool for solving those flow problems where the
interactions between sound waves and shocks are

important, such as the noise field around a super-
sonic over- or under expansion jet.

Details of our investigation will be reported eise.

where [13]. Here as an example, we present the nu-
merical results of a calculation involving a free shear
layer which is subjected to upstream time-dependent
perturbation. The Mach number of the fast stream is
1.5 and the slow stream is subsonic. Fig. 23 illustrates
the contours of pressure, v-velocity and vorticity in
the near field. The computational mesh is formed by
240 × 150 uniform cells. From v-velocity contours, ed-
dies created by the upstream perturbation are clearly
visible. On the subsonic side, sound waves propagate
freely to far field, while on the fast stream side (lower

I/3 domain) the sound waves are bounded by the Mach
line, even smaller eddies are created around the Mach
line due to their interactions. In summary, the current

results reveals a lot of physical details of the perturbed
shear layer and we believe that the current method will
develop into a robust and unique numerical technique
for aeroaconstics computation.

6. Conclusions and Discussions

A new numerical method is being developed for

solving one-dimensional and multidimensional flow
problems. This new method represents a clear break
from the traditional methods in the basic concept
of numerical discretization. It emphasizes shnp//c/t_

genera//ty, and accuracy. The history of this new
method and the considerations that motivate its de-

velopment are described in Sec. 1.

In this paper, the same design principles that were
used to construct several solvers for 1D time-marching

problems [5] are used to construct their 2D counter-
parts. Because of the similarity in their designs, each
of the present 2D solvers shares with its 1D counter-
part virtually the same fundamental characteristics.
Furthermore, it has been shown that the 2D solvers,
as in the case of the 1D solvers, generally are more ac-
curate than the traditional solvers despite the advan-

tage the current solvers have over the latter in s/mptic-
ity and generality. Accuracy of the current 2D Elder

solver is most vividly demonstrated by the pressure-
contour plot (Fig. 22) and the 31) pressure-distribution
plot (Fig. I) it generates for a famous shock refle¢-
tion problem [14]. Both the incident and the reflected
shocks are resolved by a single data point without the
presence of numerical oscillations near the discontian-

ity.

Construction of the 1D solvers referred to above

is simplified by the use of a mesh that is staggered in
time [1,9]. Its use results in the simplest stencil possi-
ble, i.e., a triangle in 2D space-time with one vertex at
the upper time level and other two at the lower time
level. Similarly, construction of the current 2D solvers
is simplified by the use of a nontraditional space-time
mesh that is also staggered in time (Figs. 3-6). Its use
results in the simplest stencil possible, i._., a tetrahe.

dron (Fig. 10) in 3D space-time with one vertex at the
upper time level and the other three at the lower time
levels.

The meshes used by the ID and 2D solvers con-
siat of whole-integer and half-integer time levels with a
half-integer time level being sandwiched between two
whole-integer time levels, and vice versa. The spa-
tial positions of the mesh points at a whole-integer

(half-integer) time level coincide with those at an-
other whole-integer (half-integer) time level. However,
the spatial positions of the mesh points at a whole-
integer time level shift from those at a half-integer
time level. For the mesh used by the 1D solvers, the

spatial projection of a mesh point at a wbole-integer
time level is right at the center of those of two neigh-
boring mesh points at a half-integer time level, and
vice versa [1,5,9]. It follows that the stencil of the 1D
solvers is always an isosceles triangle, i.e., one cannot
distinguish a stencil with its upper vertex at a whole-

integer time level from another with its upper vertex
at a half-integer time level. As a result, each of the 1D
solvers constructed in [1,5,9] is formed by two iden-
tical marching steps. Contrarily, for the present 2D
solvers, a stencil (a tetrahedron) with its vertex at a
whole-integer time level is different from another with
its vertex at a half-integer time level (Fig. 10). Thus,
each of the present 2D solvers is formed by two dis-
tinctly different marching steps. In spite of their struc-
tural differences, the last two marching steps compen-
sate each other and their combination results in several

important symmetric properties that are discussed in
[2].

The Elder a scheme constructed in Sec. 4 is free
from numerical diffusion when it is stable. This scheme

is a limiting case of a Navier-Stokcs solver currently
under development, i.e., the former is a special case of
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the latter when the viscosity vanishes. As a result, the

new Navier-Stokes solver will have a special property

that a classical solver lacks, i.e., as the physical diffu-

sion (viscosity) approaches zero, so does the numerical

diffusion. The significance of this property was dis-
cussed earlier. Because a Navier-Stokes problem fun-

damentally is an initial-value/boundary-value prob-

lem, i.e., information from any spatial point can be

felt instantly by other spatial points, the new Navler-

Stokes solver is implicit when viscosity is present.
However, it becomes explicit when viscosity is absent.

Finally, note that a new implicit solver for

Eq. (1.3) has been developed recently [4]. This new
solver shares with the above Navier-Stok_s solver es-

sentially the same characteristics. In the inviscid limit,

this new scheme becomes explicit and its amplification

factors are identical to those of the Leapfrog schemes.

On the other hand, in the pure diffusion limit, its prin-

cipal amplification factor becomes the amplification
factor of the Crank-Nieolson scheme. By using an ap-

proach similar to that described in [4], a new a-_ solver

for Eq. (1.1) was also developed. Stability of this new

a-e scheme is again limited by the CFL condition and

0 _< c _< 1. Moreover, if e - 0, its amplification factors
are identical to those of the Leapfrog scheme. On the

other hand, if c - 1, its principal amplification factor

becomes the amplification factor of the Lax-Wendroff

scheme. This new a-e scheme will be reported in the
near future.
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Figure 23._Aeroacoustic computation of a free shear

layer. (The fast stream lies in the bottom 113 domain

while the slower stream lies in the top 2/3 domain.

A small sinusoidal time-dependent perturbation is

applied at the shear layer separating two streams.)

(a) Pressure contours. (13) v-velocity contours.

(c) Vorticity contours.

Table L--Definitions of test problems numbers 1 to 6 and the

8 r_

I 0.5 2
2 .5 2
3 .,5 2
4 .2 2
5 .8 2
6 .5 1

correspondingvaluesofT,ve=_t,v_, andn¢

R S "&t nt T v_ v_ n=

20! 60 O.OI 600 6 0.585 0.6204 152.32
201 60 .015 400 6 .8775 .9305 101..55
40 120 .0075 800 6 .8775 .9302 203.09
20 60 .01 600 6 .585 .6303 152.32
20 60 .01 600 6 .585 .6212 152.32

20 60 .01 600 6 .585 .6206 15232
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